

ECE 101: Exploring Digital Information Technologies for Non-Engineers

Distribution and Streaming

ECE 101: Exploring Digital Information Technologies for Non-Engineers © 2023 Steven S. Lumetta, Romit Roy Choudhury and Abrita Chakravarty. All rights reserved.

Internet Just for Point-to-Point Communication?

So far, we have focused on the Internet ° as a way for one computer ° to communicate with another.

2

4

That was the original design, and how the Internet is most often used.

What about Broadcast Media?

For most of the 20th century, ^o part of the electromagnetic spectrum ^o was dedicated to television signals ^o broadcasting to most of the world. In the later part of the century, ^o copper cables were used ^o to deliver signals to areas ^o that were hard to reach with EM signals. ^o Again, purely for broadcast.

Can the Internet Replace Other Networks?

- By the early 90s,
- ° link bandwidths on university campuses
- ° were large enough
- to transmit video in real-time.

As bandwidth from the Internet

- ° continued to grow in the 90s and 2000s,
- **other media**, such as telephony and broadcast media (television and cable)
- started to migrate their infrastructures onto the Internet.

Today, Internet Supports Video on Demand for All

Today's Internet is used **routinely** to **deliver** high-definition **video on demand to hundreds of millions** of people.

Next, we'll talk about how such feats are possible.

- Part of the solution was • technological advances in
- communication (last slide),

° which enabled orders of magnitude more information to traverse the networks.

8

Multicast is Not an Easy Problem

Trying to find a good way to support **multicast** in the Internet **occupied researchers for decades**.

Everyone knew it was important, but ° with millions of connections through each router, ° solutions could not expect routers

° to handle each connection separately.

Hamming Codes Used in Nearly Every Digital Memory

The code we just used ° is called a **Hamming code** ° after Richard Hamming, ° a UIUC Math alumnus.

Other than to illustrate the idea, it's not so useful as a 5-out-of-7 code for multicast.

But it is used in nearly every memory!

23

Multicast Does Not Help with Video on Demand

What about on-demand video?

Multicast is only useful for ° fully synchronous

- ° all receivers watch one video simultaneously
- (like Zoom, Google Meet, Microsoft Teams, and other conferencing tools—we'll come back to those along with gaming in a few weeks), and

° fully asynchronous

- ° all listeners receive the same data,
- ° but don't display the data in real-time.

Video on Demand Leverages Growth in Bandwidth

Video on demand allows each user ^o to watch a video in real-time ^o independently of other users.

This type of service is what we expect ^o from YouTube, Netflix, and Hulu, and ^o or from the video advertisements injected into our viewing.

To some extent, these applications rely on advances in **network bandwidth**.

Distribution Reduces Latency and Increases Bandwidth

Content Replicated for Availability and Locality

Datacenters are Connected with High-Bandwidth

How are these datacenters connected?

The answer varies:

- ^o Google **built its own** optical network;
- ^o other companies **rent fibers** (multiple Tbps) or wavelengths (10-100 Gbps), or
- ^o Pay another company (such as Akamai) to handle content distribution.

Content Distribution Requires More than Locality

Distributing content amongst a company's **datacenters** • **can leverage multicast** • over the company's network.

But more **tuning** is **necessary** • to adapt **to** the wide range • of **user needs and connectivity**.

Large Formats Take Longer to Send Imagine that a company keeps all videos in 4K Ultra HD format (20 Mbps bandwidth). What if a customer has only 10 Mbps? Does the company transmit the 4K format, • forcing the user to wait for buffering, or • to stall every so often to catch up?

29

31

Companies Keep Multiple Formats to Serve Customers

Instead, many companies ° keep video in multiple formats

- ° and **send the** format that **best fit**s a customer's network bandwidth and display capabilities
- ° (some companies allow you to override the choice, if you enjoy pain).

