Impedance matching via QWT

Goal: Design a QWT matching network such that: $Z_{i n}=Z_{0}$
For Z_{L} purely real:

$$
z_{i n}=1+j 0
$$

Since $\quad Z_{i n} Z_{L}=Z_{T}^{2}$
a match is achieved with a T.L having:

$$
Z_{T}=\sqrt{Z_{0} Z_{L}}
$$

Impedance matching via QWT

Goal: Design a QWT matching network such that: $Z_{i n}=Z_{0}$
For complex Z_{L} :

Now, $\quad Z_{i n 1} Z_{i n 2}=Z_{0} Z_{i n 2}=Z_{T}^{2}$
So that $\quad Z_{i n 2}=Z_{T}^{2} / Z_{0}$ must be purely real

Single stub tuning

Steps to Solve a Single-Stub Matching Problem

Goal: Design a single-stub matching network such that

$$
Y_{I N}=Y_{\text {STUB }}+Y_{A}=Y_{0}
$$

1) Convert the load to a normalized admittance: $y_{L}=g+j b$
2) Transform y_{L} along constant Γ towards generator until $y_{A}=1+j b_{A}$

- This matches the network's conductance to that of the transmission line and determines $\mathrm{d}_{\text {stub }}$

3) Find $y_{\text {stub }}=-j b_{A}$ on Smith Chart
4) Transform $y_{\text {STUB }}$ along constant Γ towards load until we reach $P_{\text {SC }}$ (for short-circuit stub) or P_{oc} (for open-circuit stub)

- This cancels susceptance from (2) and determines $L_{\text {stUB }}$

1) Find y_{L}
2) Transform y_{L} to $y_{A}=1+j b_{A}$
3) Find $y_{\text {STUB }}=-j b_{A}$
4) Transform $y_{\text {Stub }}$ to $P_{S C}$ (or P_{OC})

There is a second solution where the Γ circle and $\mathrm{g}=1$ circle intersect. This is also a solution to the problem, but requires a longer $d_{\text {STUB }}$ and $L_{\text {STUB }}$ so is less desirable, unless practical constraints require it.

1) Find y_{L}
2) Rotate towards generator until intersection with $\mathrm{g}=1$ circle ($\mathrm{d}_{\text {STUB }}$)
3) Read off b_{A}
4) Find $b_{\text {Stub }}$
5) Rotate towards load until stub termination is reached (L $\mathrm{L}_{\text {stub }}$)

A $50-\Omega$ T-L is terminated in an impedance of $Z_{L}=35-j 47.5$. Find the position and length of the short-circuited stub to match it.

1) Normalize Z_{L} $z_{L}=0.7-j 0.95$
2) Find z_{L} on S.C.
3) Draw Γ circle
4) Convert to y_{L}
5) Find $\mathrm{g}=1$ circle
6) Find intersection of Γ circle and $g=1$ circle $\left(y_{A}\right)$
7) Find distance traveled (WTG) to get to this admittance
8) This is $d_{\text {Stub }}$
$\mathrm{d}_{\text {STUB }}=(.168-.109) \lambda$
$d_{\text {STUB }}=.059 \lambda$

A $50-\Omega$ T-L is terminated in an impedance of $Z_{L}=35-j 47.5$. Find the position and length of the short-circuited stub to match it.
9) Find b_{A}
10)Locate $P_{S C}$
11)Set $b_{\text {STUB }}=b_{A}$ and find
$y_{\text {STUB }}=-j b_{\text {STUB }}$
12)Find distance traveled (WTG) to get from P_{Sc} to $\mathrm{b}_{\text {STUB }}$
13)This is $L_{\text {stub }}$

$$
L_{\text {STUB }}=(0.361-0.25) \lambda
$$

$$
L_{\text {STUB }}=.111 \lambda
$$

Our solution is to place a short-circuited stub of length .111 λ a distance of $.059 \lambda$ from the load.

There is a second solution where the Γ circle and $\mathrm{g}=1$ circle intersect. This is also a solution to the problem, but requires a longer $d_{\text {STUB }}$ and $\mathrm{L}_{\text {STUB }}$ so is less desirable, unless practical constraints require it.

$$
\begin{aligned}
& \mathrm{d}_{\text {STUB }}=(.332-.109) \lambda \\
& \mathrm{d}_{\text {STUB }}=.223 \lambda \\
& \mathrm{~L}_{\text {STUB }}=(.25+.139) \lambda \\
& \mathrm{L}_{\text {STUB }}=.389 \lambda
\end{aligned}
$$

Double stub tuning

the goal still is to achieve a match, so $y_{i n B}=1+j 0$

Steps to Solve a Double-Stub Matching Problem

Goal: Design a double-stub matching network such that

$$
Y_{I N, A}=Y_{0}
$$

1) Convert the load to a normalized admittance: $y_{L}=g+j b$
2) Transform y_{L} along constant Γ towards generator by distance d_{A} to reach $y_{A}=g_{A}+j b_{A}$
3) Draw auxillary circle (pivot of $\mathrm{g}=1$ circle by distance d_{B})
4) Add susceptance (b) to y a to get to $y i N, A$ on auxillary circle. The amount of susceptance added is equal to -bsA, the input susceptance of stub A.
5) Find $y_{S A}=-j b_{S A}$ Determine L_{A} by transforming $y_{S A}$ along constant Γ towards load until we reach P_{SC} (for short-circuit stub) or P_{OC} (for open-circuit stub).
6) Transform $y_{i N, A}$ along constant Γ towards generator by distance d_{B} to reach y_{B} on auxillary circle. The susceptance of $y_{B}\left(b_{B}\right)$ is equal to -bss, the input susceptance of stub B.
7) Find $y_{S B}=-j b_{S B}$ Determine L_{B} by transforming $y_{S B}$ along constant Γ towards load until we reach P_{sc} (for short-circuit stub) or $\mathrm{P}_{\text {oc }}$ (for open-circuit stub).

To solve a double-stub tuner problem:

1) Find the $g=1$ circle. All possible solutions for y_{B} must fall on this circle 2) Rotate the $g=1$ circle a distance d_{B} towards the load. These are the values at the input to the A junction that will transform to the $\mathrm{g}=1$ circle at junction B 3) Find y_{A} on chart 4) Rotate along the constant g circle to find the intersection with the rotated $\mathrm{g}=1$ circle. The change in b to do this is the susceptance at the input to the stub at junction A

2) To find the admittance at junction $B\left(y_{B}\right)$, rotate $y_{I_{N, A}}$ towards the generator by d_{B}. If we've drawn everything right, this will intersect the $\mathrm{g}=1$ circle. 6) Read off the value for b_{B}. This is $-b_{S B}$ for the stub at junction B
3) Calculate the length of the B stub by rotating towards the load from $b_{S B}$ to the appropriate stub termination (P_{SC} or P_{oc})
4) Calculate the length of the A stub in the same way starting from $b_{S A}$

Similar to the singlestub network, there are multiple lengths for the stubs that will work.

There is a range of y_{A} that cannot be matched Irregardless of the short/open stub properties, we will never intersect the rotated $\mathrm{g}=1$ circle.

