&

PRINTED WITH

SOYINK|_

TMS320C54x DSP
Reference Set

Volume 2: Mnemonic Instruction Set

Literature Number: SPRU172B
June 1998

b TEXAS 2s

NSTRUM ENTS Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is currentand complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgement, including those pertaining to warranty, patent
infringement, and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent Tl deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY
AT THE CUSTOMER'’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not
warrant or represent that any license, either express orimplied, is granted under any patentright,
copyright, mask work right, or other intellectual property right of Tl covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI's publication of information regarding any third party’s products or services does
not constitute TI's approval, warranty or endorsement thereof.

Copyright [0 1998, Texas Instruments Incorporated

About This Manual

Preface

Read This First

The TMS320C54x is a fixed-point digital signal processor (DSP) in the
TMS320 family, and it can use either of two forms of the instruction set: a
mnemonic form or an algebraic form. This book is a reference for the mnemon-
ic form of the instruction set. It contains information about the instructions used
for all types of operations (arithmetic, logical, load and store, conditional, and
program control), the nomenclature used in describing the instruction opera-
tion, and supplemental information you may need, such as interrupt priorities
and locations.

This book uses a shortened form of the device name, '54x, to refer to all mem-
bers of the device family and as an aid in readability. For a summary of updates
in this book, see Appendix E, Summary of Updates in This Document.

How to Use This Manual

The following table summarizes the '54x information contained in this book:

If you are looking for

information about: Turn to:

Arithmetic operations Chapter 2, Instruction Set Summary

Changes in this document Appendix E, Summary of Updates in This
Document

Conditions for conditional Appendix A, Condition Codes

instructions

Example description of Chapter 1, Symbols and Abbreviations

instruction

Individual instruction Chapter 4, Assembly Language Instructions

descriptions

How to Use This Manual / Notational Conventions

If you are looking for
information about:

Turn to:

Instruction set abbreviations
Instruction set classes
Instruction set symbols

Interrupt locations and
priorities

Interrupt register layout
Load and store operations
Logical operations
Program control operations
Status register layout
Summary of instructions

Summary of updates in this
document

Chapter 1, Symbols and Abbreviations
Chapter 3, Instruction Classes and Cycles
Chapter 1, Symbols and Abbreviations

Appendix B, Interrupt Locations and Priority
Tables

Appendix C, Interrupt and Status Registers
Chapter 2, Instruction Set Summary
Chapter 2, Instruction Set Summary
Chapter 2, Instruction Set Summary
Appendix C, Interrupt and Status Registers
Chapter 2, Instruction Set Summary

Appendix E, Summary of Updates in This
Document

Notational Conventions

This book uses the following conventions.

[0 Program listings and program examples are shown in a special type-

face .

Here is a segment of a program listing:

LMS *AR3+, *AR4+

[In syntax descriptions, the instruction is in a bold typeface and parame-
ters are in an italic typeface. Portions of a syntax in bold must be entered
as shown; portions of a syntax in italics describe the type of information
that you specify. Here is an example of an instruction syntax:

LMS Xmem, Ymem

LMS is the instruction, and it has two parameters, Xmem and Ymem.
When you use LMS, the parameters should be actual dual data-memory
operand values. A comma and a space (optional) must separate the two

values.

Notational Conventions / Related Documentation From Texas Instruments

[0 The term OR is used in the assembly language instructions to denote a
Boolean operation. The term or is used to indicate selection. Here is an
example of an instruction with OR and or:

Ik OR (src) — src or [dst]

This instruction ORs the value of Ik with the contents of src. Then, it stores
the result in src or dst, depending on the syntax of the instruction.

[0 Square brackets, [and], identify an optional parameter. If you use an op-
tional parameter, specify the information within the brackets; do not type
the brackets themselves.

Related Documentation From Texas Instruments

The following books describe the '54x and related support tools. To obtain a
copy of any of these Tl documents, call the Texas Instruments Literature
Response Center at (800) 477-8924. When ordering, please identify the book
by its title and literature number.

TMS320C54x DSP Reference Set is composed of four volumes that can be
ordered as a set with literature number SPRU210. To order an individual
book, use the document-specific literature number:

TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals
(literature number SPRU131) describes the TMS320C54x 16-bit,
fixed-point, general-purpose digital signal processors. Covered
are its architecture, internal register structure, data and program
addressing, the instruction pipeline, and on-chip peripherals. Also
includes development support information, parts lists, and design
considerations for using the XDS510 emulator.

TMS320C54x DSP Reference Set, Volume 2: Mnemonic Instruction
Set (literature number SPRU172) describes the TMS320C54x
digital signal processor mnemonic instructions individually. Also
includes a summary of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 3: Algebraic Instruction
Set (literature number SPRU179) describes the TMS320C54x
digital signal processor algebraic instructions individually. Also
includes a summary of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 4: Applications Guide
(literature number SPRU173) describes software and hardware
applications for the TMS320C54x digital signal processor. Also
includes development support information, parts lists, and design
considerations for using the XDS510 emulator.

Read This First \Y;

Related Documentation From Texas Instruments

vi

TMS320C54x, TMS320LC54x, TMS320VC54x Fixed-Point Digital Signal
Processors (literature number SPRS039) data sheet contains the
electrical and timing specifications for these devices, as well as signal
descriptions and pinouts for all of the available packages.

TMS320C54x DSKplus User's Guide (literature number SPRU191)
describes the TMS320C54x digital signal processor starter kit (DSK),
which allows you to execute custom 'C54x code in real time and debug it
line by line. Covered are installation procedures, a description of the
debugger and the assembler, customized applications, and initialization
routines.

TMS320C54x Assembly Language Tools User’s Guide (literature number
SPRU102) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler di-
rectives, macros, common object file format, and symbolic debugging di-
rectives for the 'C54x generation of devices.

TMS320C5xx C Source Debugger User's Guide (literature number
SPRUQ099) tells you how to invoke the 'C54x emulator, evaluation
module, and simulator versions of the C source debugger interface. This
book discusses various aspects of the debugger interface, including
window management, command entry, code execution, data
management, and breakpoints. It also includes a tutorial that introduces
basic debugger functionality.

TMS320C54x Code Generation Tools Getting Started Guide (literature
number SPRU147) describes how to install the TMS320C54x assembly
language tools and the C compiler for the 'C54x devices. The installation
for MS-DOSLI, OS/20, SunOS, Solaris[1, and HP-UX[9.0x systems
is covered.

TMS320C54x Evaluation Module Technical Reference (literature number
SPRU135) describes the 'C54x evaluation module, its features, design
details and external interfaces.

TMS320C54x Optimizing C Compiler User’s Guide (literature number
SPRU103) describes the 'C54x C compiler. This C compiler accepts
ANSI standard C source code and produces TMS320 assembly lan-
guage source code for the 'C54x generation of devices.

TMS320C54x Simulator Getting Started (literature number SPRU137) de-
scribes how to install the TMS320C54x simulator and the C source
debugger for the 'C54x. The installation for MS-DOS[, PC-DOSL],
SunOS[l, Solarisl], and HP-UX[systems is covered.

Related Documentation From Texas Instruments / Trademarks

TMS320 Third-Party Support Reference Guide (literature number
SPRUO052) alphabetically lists over 100 third parties that provide various
products that serve the family of TMS320 digital signal processors. A
myriad of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise can-
cellation, modems, etc.

TMS320 DSP Development Support Reference Guide (literature number
SPRUO011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

Trademarks
HP-UX is a trademark of Hewlett-Packard Company.
MS-DOS is a registered trademark of Microsoft Corporation.

0S/2 and PC-DOS are trademarks of International Business Machines Corpo-
ration.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

Tl is a trademark of Texas Instruments Incorporated.

Read This First Vii

If You Need Assistance...

If You Need Assistance. . .

O World-Wide Web Sites

TI Online http://www.ti.com

Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps

320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.htm

1 North America, South America, Central America

Product Information Center (PIC) (972) 644-5580

Tl Literature Response Center U.S.A. (800) 477-8924

Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742

U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285

U.S. Technical Training Organization (972) 644-5580

DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323

DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

O Europe, Middle East, Africa

European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33130701169 Fax: +331307010 32
Email: epic@ti.com
Deutsch +49 8161 80 3311 or +33 130 70 11 68
English +33130701165
Francais +33130701164
Italiano +33130701167
EPIC Modem BBS +3313070 1199
European Factory Repair +334 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
0 Asia-Pacific
Literature Response Center +852 2956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 25512804 Fax: +82 2551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/Tl/
O Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

(0 Documentation

When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.
Mail: Texas Instruments Incorporated Email: dsph@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

viii

Contents

Symbols and Abbreviations 1-1

Lists and defines the symbols and abbreviations used in the instruction set summary and in the
individual instruction descriptions. Also provides an example description of an instruction.

1.1 Instruction Set Symbols and Abbreviations i 1-2
1.2 Example Description of Instruction i 1-9
INSLrUCtioON Set SUMMAIY e e e e e 2-1

Provides a summary of the instruction set divided into four basic types of operation. Also
includes information on repeating a single instruction and a list of nonrepeatable instructions.

2.1 Arithmetic Operationst e 2-2
2.2 Logical OPerationsttt e e e 2-8
2.3 Program-Control Operationsccuuiint e 2-10
2.4 Load and Store Operationsuiintii e 2-14
2.5 Repeating a Single INStruction i 2-19
Instruction Classes and CyCles 3-1

Describes the classes and lists the cycles of the instruction set.

Assembly Language INStrUCtiONS it 4-1
Describes the '54x assembly language instructions individually.

ConditioN COOBS ..ottt A-1

Lists the conditions used in conditional instructions and the combination of conditions
that can be tested.

Interrupt Locations and Priority Tables e B-1
Lists the '54x interrupt locations and priorities for each individual device type.

Interrupt and Status RegiSterS C-1
Shows the bit fields of the '54x interrupt and status registers.

GlOSSaANY ..ottt e D-1
Defines terms and abbreviations used throughout this book.

Summary of Updates in This Document ... e E-1
Provides a summary of the updates in this version of the document.

Figures

C-1 Interrupt Flag Register (IFR) o C-3
Cc-2 Interrupt Mask Register (IMR) o C-14
C-3 Processor Mode Status Register (PMST) . ..ottt e e e C-5
C—4 Status Register O (STO) ... iv ittt e e e e e e C-5
C-5 Status Register 1 (ST L) ...ttt e e C-5

Instruction Set Symbols and Abbreviations 1-2
Opcode Symbols and Abbreviations i e 1-5
INStruction Set NOtatioNS ot 1-7
Operators Used in Instruction Set e 1-8
Add INStIUCHIONS . ..o e 2-2
Subtract INStrUCHIONS 2-3
MUItiply INSErUCHIONS o e e e 2-4
Multiply-Accumulate and Multiply-Subtract Instructions 2-4
Double (32-Bit Operand) INStruCtionst e 2-6
Application-Specific INStrUCtIONS o e e e 2-7
AND INStrUCHIONS .ot e e e 2-8
OR INSIIUCHONS ..ot e e e e e e e 2-8
XOR INSHUCHONS . . oottt e e e e e e e e e e e e 2-9
Shift INStUCHIONS . ..o e 2-9
TESt INSITUCHIONS . .ot e e 2-9
Branch INStrUCtiONS o e 2-10
Call INSIIUCHIONS .« . ..ttt e e e e e e e e e e e 2-11
INterrUPt INStIUCHIONSo e e 2-11
RetUrn INSIIUCHIONS . .. oo e e e e e e e e e 2-12
Repeat INStrUCHIONSttt et e e 2-12
Stack-Manipulating INStructions i 2-13
Miscellaneous Program-Control Instructions iinn.n. 2-13
Load INSIIUCHIONSot e e e e e e e e 2-14
StOre INSIIUCHIONS . .. oo e e e e e e e 2-15
Conditional Store INStrUCtioNSt e 2-16
Parallel Load and Store INStructions ...t 2-16
Parallel Load and Multiply INStructions i 2-16
Parallel Store and Add/Subtract Instructions i 2-17
Parallel Store and Multiply INStructions i 2-17
Miscellaneous Load-Type and Store-Type Instructionst 2-18
Multicycle Instructions That Become Single-Cycle Instructions When Repeated 2-19
Nonrepeatable INStruCtionS i 2-20
Conditions for Conditional INStructions i A-2
Groupings of ConNditioNS ot A-3

Contents Xi

Tables

CPPTIRTT
||—\\|mcn4>w|\>|—\

Xii

'541 Interrupt Locations and Priorities B-2
'542 Interrupt Locations and Priorities B-3
'543 Interrupt Locations and Priorities B-4
'545 Interrupt Locations and Priorities B-5
'546 Interrupt Locations and Priorities B-6
'548 Interrupt Locations and Priorities B-7
'549 Interrupt Locations and Priorities o B-8
Register Field Terms and Definitions i i C-1

Chapter 1

Symbols and Abbreviations

This chapter lists and defines the symbols and abbreviations used in the
instruction set summary and in the individual instruction descriptions. It also
provides an example description of an instruction.

Topic

Page
1.1 Instruction Set Symbols and Abbreviations ~ 1-2
1.2 Example Description of Instruction 1-9

1-1

Instruction Set Symbols and Abbreviations

1.1 Instruction Set Symbols and Abbreviations

Table 1-1 through Table 14 list the symbols and abbreviations used in the
instruction set summary (Chapter 2) and in the individual instruction descrip-
tions (Chapter 4).

Table 1-1. Instruction Set Symbols and Abbreviations

Symbol Meaning

A Accumulator A

ALU Arithmetic logic unit

AR Auxiliary register, general usage

ARX Designates a specific auxiliary register (0 < x < 7)

ARP Auxiliary register pointer field in STO; this 3-bit field points to the current auxiliary register (AR).

ASM 5-bit accumulator shift mode field in ST1 (-16 < ASM =< 15)

B Accumulator B

BRAF Block-repeat active flag in ST1

BRC Block-repeat counter

BITC 4-bit value that determines which bit of a designated data memory value is tested by the test bit
instruction (0 < BITC =< 15)

C16 Dual 16-bit/double-precision arithmetic mode bit in ST1

C Carry bitin STO

CC 2-bit condition code (0 < CC = 3)

CMPT Compatibility mode bit in ST1

CPL Compiler mode bit in ST1

cond An operand representing a condition used by instructions that execute conditionally

D] Delay option

DAB D address bus

DAR DAB address register

dmad 16-bit immediate data-memory address (0 < dmad < 65 535)

Dmem Data-memory operand

1-2

Instruction Set Symbols and Abbreviations

Table 1-1. Instruction Set Symbols and Abbreviations (Continued)

Symbol Meaning

DP 9-bit data-memory page pointer field in STO (0 < DP < 511)
dst Destination accumulator (A or B)

dst_ Opposite destination accumulator:

If dst = A, thendst_ =B
If dst =B, thendst_ = A

EAB E address bus

EAR EAB address register

extpmad 23-bit immediate program-memory address
FRCT Fractional mode bitin ST1

hi(A) High part of accumulator A (bits 31-16)

HM Hold mode bitin ST1

IFR Interrupt flag register

INTM Interrupt mode bit in ST1

K Short-immediate value of less than 9 bits
k3 3-bit immediate value (0 < k3 < 7)

k5 5-bit immediate value (-16 < k5 < 15)

k9 9-bit immediate value (0 < k9 < 511)

Ik 16-bit long-immediate value

Lmem 32-bit single data-memory operand using long-word addressing

mmr, MMR Memory-mapped register

MMRX, Memory-mapped register, ARO—AR7 or SP

MMRy

n Number of words following the XC instruction; n=1 or 2

N Designates the status register modified in the RSBX, SSBX, and XC instructions:

N =0 Status register STO
N =1 Status register ST1

Symbols and Abbreviations 1-3

Instruction Set Symbols and Abbreviations

Table 1-1. Instruction Set Symbols and Abbreviations (Continued)

Symbol Meaning

OVA Overflow flag for accumulator A in STO

OovVvB Overflow flag for accumulator B in STO

OVdst Overflow flag for the destination accumulator (A or B)

OVdst_ Overflow flag for the opposite destination accumulator (A or B)

OVsrc Overflow flag for the source accumulator (A or B)

OVM Overflow mode bit in ST1

PA 16-bit port immediate address (0 = PA < 65 535)

PAR Program address register

PC Program counter

pmad 16-bit immediate program-memory address (0 < pmad < 65 535)

Pmem Program-memory operand

PMST Processor mode status register

prog Program-memory operand

[R] Rounding option

RC Repeat counter

REA Block-repeat end address register

rnd Round

RSA Block-repeat start address register

RTN Fast-return register used in RETF[D] instruction

SBIT 4-bit value that designates the status register bit number modified in the RSBX, SSBX, and
XC instructions (0 < SBIT < 15)

SHFT 4-bit shift value (0 = SHFT =< 15)

SHIFT 5-bit shift value (-16 < SHIFT < 15)

Sind Single data-memory operand using indirect addressing

Smem 16-bit single data-memory operand

SP Stack pointer

src Source accumulator (A or B)

1-4

Instruction Set Symbols and Abbreviations

Table 1-1. Instruction Set Symbols and Abbreviations (Continued)

Symbol Meaning

STO, ST1 Status register 0, status register 1

SXM Sign-extension mode bit in ST1

T Temporary register

TC Test/control flag in STO

TOS Top of stack

TRN Transition register

TS Shift value specified by bits 5-0 of T (-16 < TS < 31)

uns Unsigned

XF External flag status bitin ST1

XPC Program counter extension register

Xmem 16-bit dual data-memory operand used in dual-operand instructions and some single-operand
instructions

Ymem 16-bit dual data-memory operand used in dual-operand instructions

-—-SP Stack pointer value is decremented by 1

++ SP Stack pointer value is incremented by 1

++PC Program counter value is incremented by 1

Table 1-2. Opcode Symbols and Abbreviations

Symbol Meaning

A Data-memory address bit

ARX 3-bit value that designates the auxiliary register
BITC 4-bit bit code

ccC 2-bit condition code

CCcCc cccce 8-bit condition code

COND 4-bit condition code

Symbols and Abbreviations 1-5

Instruction Set Symbols and Abbreviations

Table 1-2. Opcode Symbols and Abbreviations (Continued)

Symbol Meaning
D Destination (dst) accumulator bit
D=0 Accumulator A
D=1 Accumulator B
I Addressing mode bit
I =0 Direct addressing mode
I =1 Indirect addressing mode
K Short-immediate value of less than 9 bits
MMRX 4-bit value that designates one of nine memory-mapped registers (0 < MMRX =< 8)
MMRY 4-bit value that designates one of nine memory-mapped registers (0 < MMRY < 8)
N Single bit
NN 2-bit value that determines the type of interrupt
R Rounding (rnd) option bit
R =0 Execute instruction without rounding
R =1 Round the result
S Source (src) accumulator bit
S=0 Accumulator A
S=1 Accumulator B
SBIT 4-bit status register bit number
SHFT 4-bit shift value (0 = SHFT =< 15)
SHIFT 5-bit shift value (=16 < SHIFT < 15)
X Data-memory bit
Y Data-memory bit
Z Delay instruction bit

Z =0 Execute instruction without delay

Z =1 Execute instruction with delay

1-6

Instruction Set Symbols and Abbreviations

Table 1-3. Instruction Set Notations

Symbol Meaning

Boldface Boldface characters in an instruction syntax must be typed as shown.

Characters Example: For the syntax ADD Xmem, Ymem, dst, you can use a variety of values for Xmem
and Ymem, but the word ADD must be typed as shown.

italic Italic symbols in an instruction syntax represent variables.

symbols Example: For the syntax ADD Xmem, Ymem, dst, you can use a variety of values for Xmem
and Ymem.

[x] Operands in square brackets are optional.

Example: For the syntax ADD Smem |, SHIFT], src|, dst], you must use a value for Smem
and src; however, SHIFT and dst are optional.

Prefix of constants used in immediate addressing. For short- or long-immediate operands, # is
used in instructions where there is ambiguity with other addressing modes that use immediate
operands. For example:

RPT #15 uses shortimmediate addressing. It causes the next instruction to be repeated 16 times.
RPT 15 uses direct addressing. The number of times the next instruction repeats is determined
by a value stored in memory.

For instructions using immediate operands for which there is no ambiguity, # is accepted by the
assembler. For example, RPTZ A, #15 and RPTZ A, 15 are equivalent.

(abc) The content of a register or location abc.

Example: (src) means the content of the source accumulator.

X >y Value x is assigned to register or location y.

Example: (Smem) - dst means the content of the data-memory value is loaded into the
destination accumulator.

r(n—m) Bits n through m of register or location r.

Example: src(15-0) means bits 15 through 0 of the source accumulator.

<< nn Shift of nn bits left (negative or positive)

Il Parallel instruction

\\ Rotate left

1 Rotate right

X Logical inversion (1s complement) of x

| x| Absolute value of x

AAh Indicates that AA represents a hexadecimal number

Symbols and Abbreviations 1-7

Instruction Set Symbols and Abbreviations

Table 1-4. Operators Used in Instruction Set

Symbols Operators Evaluation

+ - -~ Unary plus, minus, 1s complement Right to left
* % Multiplication, division, modulo Left to right
+ - Addition, subtraction Left to right
<< >> Left shift, right shift Left to right
<<< Logical left shift Left to right
< < Less than, LT or equal Left to right
> = Greater than, GT or equal Left to right
Z 1= Not equal to Left to right
& Bitwise AND Left to right
A Bitwise exclusive OR Left to right
| Bitwise OR Left to right

Note: Unary +, —, and * have higher precedence than the binary forms.

1-8

Example Description of Instruction

1.2 Example Description of Instruction

This example of a typical instruction description is provided to familiarize you
with the format of the instruction descriptions and to explain what is described
under each heading. Each instruction description in Chapter 4 presents the
following information:

Assembler syntax
Operands
Opcode
Execution

Status Bits
Description
Words

Cycles

Classes
Examples

[EN NN NN

Each instruction description begins with an assembly syntax expression.
Labels may be placed either before the instruction on the same line or on the
preceding line in the first column. An optional comment field may conclude the
syntax expression. Spaces are required between the fields:

] Label
[Command and operands
1 Comment

Symbols and Abbreviations 1-9

Example Description of Instruction

Syntax

Operands

Opcode

Execution

Status Bits

Description

1-10

EXAMPLE Smem, src

EXAMPLE Smem, TS, src

EXAMPLE Smem, 16, src|, dst]
EXAMPLE Smem |, SHIFT], src|, dst]

Each instruction description begins with an assembly syntax expression. See
Section 1.1 on page 1-2 for definitions of symbols in the syntax.

Smem: Single data-memory operand
Xmem, Ymem: Dual data-memory operands
src, dst: A (accumulator A)

B (accumulator B)
-16 < SHIFT = 15

Operands may be constants or assembly-time expressions that refer to
memory, /O ports, register addresses, pointers, and a variety of other
constants. This section also gives the range of acceptable values for the oper-
and types.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|xxxxxxxxxxxxxxxx|

The opcode breaks down the various bit fields that make up each instruction.
See Section 1.1 on page 1-2 for definitions of symbols in the instruction op-
code.

(Smem) + (src) — src

(Smem) << (TS) + (src) — src
(Smem) << 16 + (src) — dst
(Smem) [<< SHIFT] + (src) — dst

The execution section describes the processing that takes place when the
instruction is executed. The example executions are numbered to correspond
to the numbered syntaxes. See Section 1.1 on page 1-2 for definitions of sym-
bols in the execution.

Aninstruction’s execution may be affected by the state of the fields in the status
registers; also it may affect the state of the status register fields. Both the
effects on and the effects ofthe status register fields are listed in this section.

This section describes the instruction execution and its effect on the rest of the
processor or on memory contents. Any constraints on the operands imposed
by the processor or the assembler are discussed. The description parallels
and supplements the information given symbolically in the execution section.

Words

Cycles

Classes

Example

Example Description of Instruction

This field specifies the number of memory words required to store the instruc-
tion and its extension words. For instructions operating in single-addressing
mode, the number of words given is for all modifiers except for long-offset mod-
ifiers, which require one additional word.

This field specifies the number of cycles required for a given '54x instruction
to execute as a single instruction with data accesses in DARAM and program
accesses from ROM. Additional details on the number of cycles required for
other memory configurations and repeat modes are given in Chapter 3,
Instruction Classes and Cycles.

This field specifies the instruction class for each syntax of the instruction. See
Chapter 3, Instruction Classes and Cycles, for a description of each class.

Example code is included for each instruction. The effect of the code on
memory and/or registers is summarized when appropriate.

Symbols and Abbreviations 1-11

1-12

Chapter 2

Instruction Set Summary

The '54x instruction set can be divided into four basic types of operations:

[Arithmetic operations

[J Logical operations

(] Program-control operations
(] Load and store operations

In this chapter, each of the types of operations is divided into smaller groups
of instructions with similar functions. With each instruction listing, you will find
the best possible numbers for word count and cycle time, and the instruction
class. You will also find a page number that directs you to the appropriate place
in the instruction set of Chapter 4. Also included is information on repeating
a single instruction and a list of nonrepeatable instructions.

Topic Page
2.1 Arithmetic Operationst 2-2
2.2 Logical Operations ...ttt 2-8
2.3 Program-Control Operations —ooiiiiiniiinnneenn.. 2-10
2.4 Load and Store Operations —oiii e 2-14
2.5 Repeating a Single Instruction i 2-19

2-1

Arithmetic Operations

2.1 Arithmetic Operations

This section summarizes the arithmetic operation instructions. Table 2—-1
through Table 2—6 list the instructions within the following functional groups:

Add instructions (Table 2-1)

Subtract instructions (Table 2—2 on page 2-3)

Multiply instructions (Table 2—3 on page 2-4)
Multiply-accumulate instructions (Table 2—4 on page 2-4)
Multiply-subtract instructions (Table 2—4 on page 2-4)
Double (32-bit operand) instructions (Table 2-5 on page 2-6)
Application-specific instructions (Table 2—6 on page 2-7)

Uoououooo

Table 2-1. Add Instructions

Syntax Expression wt Cyclest Class Page
ADD Smem, src src = src + Smem 1 1 3A, 3B 4-4
ADD Smem, TS, src src =src + Smem << TS 1 1 3A, 3B 4-4
ADD Smem, 16, src[, dst] dst = src + Smem << 16 1 1 3A, 3B 4-4
ADD Smem|, SHIFT], src[, dst] dst=src+ Smem << SHIFT 2 2 4A, 4B 4-4
ADD Xmem, SHFT, src src = src + Xmem << SHFT 1 1 3A 4-4
ADD Xmem, Ymem, dst dst = Xmem << 16 + Ymem << 16 1 1 7 4-4
ADD #lk[, SHFT], src[, dst] dst = src + #lk << SHFT 2 2 2 4-4
ADD #lk, 16, src|, dst] dst = src + #lk << 16 2 2 2 4-4
ADD src[, SHIFT] [, dst] dst = dst + src << SHIFT 1 1 1 4-4
ADD src, ASM [, dst] dst = dst + src << ASM 1 1 1 4-4
ADDC Smem, src src =src + Smem + C 1 1 3A, 3B 4-8
ADDM #lk, Smem Smem = Smem + #lk 2 2 18A,18B 4-9
ADDS Smem, src src = src + uns(Smem) 1 1 3A, 3B 4-10

T Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Smem.

2-2

Table 2-2. Subtract Instructions

Arithmetic Operations

Syntax Expression Wt Cyclest Class Page
SUB Smem, src Src = src — Smem 1 1 3A, 3B 4-187
SUB Smem, TS, src src =src—Smem << TS 1 1 3A,3B 4-187
SUB Smem, 16, src[, dst] dst = src — Smem << 16 1 1 3A,3B 4-187
SUB Smem |, SHIFT], src[, dst] dst=src—Smem << SHIFT 2 2 4A, 4B 4-187
SUB Xmem, SHFT, src Src = src — Xmem << SHFT 1 1 3A 4-187
SUB Xmem, Ymem, dst dst = Xmem << 16 — Ymem << 16 1 1 7 4-187
SUB #lk[, SHFT],src|[, dst] dst = src — #lk << SHFT 2 2 2 4-187
SUB #lk, 16, src[, dst] dst = src — #lk <<16 2 2 2 4-187
SUB src[, SHIFT] [, dst] dst = dst — src << SHIFT 1 1 1 4-187
SUB src, ASM [, dst] dst = dst — src << ASM 1 1 1 4-187
SUBB Smem, src src = src — Smem — C 1 1 3A,3B 4-191
SUBC Smem, src If (src — Smem << 15) = 0 1 1 3A,3B 4-192

src = (src —Smem << 15) << 1+ 1

Else

src=src<<1

SUBS Smem, src src = src — uns(Smem) 1 1 3A,3B 4-194

1 values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Smem.

Instruction Set Summary

2-3

Arithmetic Operations

Table 2—3. Multiply Instructions

Syntax Expression Wt Cyclest Class Page
MPY Smem, dst dst=T* Smem 1 1 3A,3B 4-101
MPYR Smem, dst dst = rnd(T * Smem) 1 1 3A,3B 4-101
MPY Xmem, Ymem, dst dst = Xmem * Ymem, T = Xmem 1 1 7 4-101
MPY Smem, #lk, dst dst = Smem *#lk , T = Smem 2 2 6A, 6B 4-101
MPY #lk, dst dst=T * #lk 2 2 2 4-101
MPYA dst dst=T * A(32-16) 1 1 1 4-104
MPYA Smem B = Smem * A(32-16), T = Smem 1 1 3A,3B 4-104
MPYU Smem, dst dst = uns(T) * uns(Smem) 1 1 3A,3B 4-106
SQUR Smem, dst dst = Smem * Smem, T = Smem 1 1 3A,3B 4-161
SQUR A, dst dst = A(32-16) * A(32-16) 1 1 1 4-161

T values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Smem.

Table 2-4. Multiply-Accumulate and Multiply-Subtract Instructions

Syntax Expression Wt Cyclest Class Page

MAC Smem, src src =src+ T * Smem 1 1 3A,3B 4-82

MAC Xmem, Ymem, src [, dst] dst = src + Xmem * Ymem, 1 1 7 4-82
T = Xmem

MAC #lk, src[, dst] dst=src+ T * #lk 2 2 2 4-82

MAC Smem, #lk, src |, dst] dst = src + Smem * #lk, 2 2 6A, 6B 4-82
T =Smem

MACR Smem, src src = rnd(src + T * Smem) 1 1 3A,3B 4-82

MACR Xmem, Ymem, src|, dst] dst = rnd(src + Xmem * Ymem), 1 1 7 4-82
T = Xmem

MACA Smem]|, B] B =B + Smem * A(32-16), 1 1 3A,3B 4-85
T =Smem

T Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Smem.

2-4

Arithmetic Operations

Table 2—4. Multiply-Accumulate and Multiply-Subtract Instructions (Continued)

Syntax Expression Wt Cyclest Class Page

MACA T, src[, dst] dst=src + T * A(32-16) 1 1 1 4-85

MACAR Smem|[, B] B = rnd(B + Smem * A(32-16)), 1 1 3A,3B 4-85
T =Smem

MACAR T, src[, dst] dst = rnd(src + T * A(32-16)) 1 1 1 4-85

MACD Smem, pmad, src src = src + Smem * pmad, 2 3 23A, 4-87
T = Smem, (Smem + 1) = Smem 23B

MACP Smem, pmad, src src = src + Smem * pmad, 2 3 22A, 4-89
T =Smem 22B

MACSU Xmem, Ymem, src src = src + uns(Xmem) * Ymem, 1 1 7 4-91
T = Xmem

MAS Smem, src src =src—T * Smem 1 1 3A,3B 4-94

MASR Smem, src src = rnd(src — T * Smem) 1 1 3A,3B 4-94

MAS Xmem, Ymem, src|, dst] dst = src — Xmem * Ymem, 1 1 7 4-94
T = Xmem

MASR Xmem, Ymem, src [, dst] dst = rnd(src — Xmem * Ymem), 1 1 7 4-94
T = Xmem

MASA Smem|[, B] B =B — Smem * A(32-16), 1 1 3A,3B 4-97
T =Smem

MASA T, src|[, dst] dst=src — T * A(32-16) 1 1 1 4-97

MASAR T, src[, dst] dst = rnd(src — T * A(32-16)) 1 1 1 4-97

SQURA Smem, src Src = src + Smem * Smem, 1 1 3A,3B 4-163
T =Smem

SQURS Smem, src Src = src — Smem * Smem, 1 1 3A,3B 4-164

T =Smem

t values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Smem.

Instruction Set Summary

2-5

Arithmetic Operations

Table 2-5. Double (32-Bit Operand) Instructions

Syntax Expression Wt Cyclest Class Page
DADD Lmem, src|, dst] IfC16=0 1 1 9A, 9B 4-37
dst=Lmem + src
fcle=1
dst(39-16) = Lmem(31-16) + src(31-16)
dst(15-0) = Lmem(15-0) + src(15-0)
DADST Lmem, dst IfC16=0 1 1 9A,9B 4-39
dst=Lmem+ (T<<16+T)
fcle=1
dst(39-16) = Lmem(31-16) + T
dst(15-0) = Lmem(15-0) - T
DRSUB Lmem, src IfC16=0 1 1 9A,9B 4-43
src = Lmem — src
IfCi6=1
src(39-16) = Lmem(31-16) — src(31-16)
src(15-0) = Lmem(15-0) — src(15-0)
DSADT Lmem, dst IfC16=0 1 1 9A,9B 4-45
dst=Lmem—(T<<16+T)
IfCcle=1
dst(39-16) = Lmem(31-16) — T
dst(15-0) = Lmem(15-0) + T
DSUB Lmem, src IfC16=0 1 1 9A,9B 4-48
Src = src — Lmem
Ifcle=1
src (39-16) = src(31-16) — Lmem(31-16)
src (15-0) = src(15-0) — Lmem(15-0)
DSUBT Lmem, dst IfC16=0 1 1 9A,9B 4-50
dst=Lmem—(T<<16+T)
fCcle=1

dst(39-16) = Lmem(31-16) — T
dst(15-0) = Lmem(15-0) - T

T values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Lmem.

2-6

Table 2—6. Application-Specific Instructions

Arithmetic Operations

Syntax Expression wt Cyclest Class Page

ABDST Xmem, Ymem B =B + |A(32-16)| 1 1 7 4-2
A = (Xmem — Ymem) << 16

ABS src|, dst] dst = |src| 1 1 1 4-3

CMPL src |, dst] dst = ~src 1 1 1 4-32

DELAY Smem (Smem + 1) = Smem 1 1 24A, 24B 4-41

EXP src T = number of sign bits (src) — 8 1 1 1 4-52

FIRS Xmem, Ymem, pmad B=B+A*pmad 2 3 8 4-59
A = (Xmem + Ymem) << 16

LMS Xmem, Ymem B =B + Xmem * Ymem 1 1 7 4-80
A=A+ Xmem << 16 + 215

MAX dst dst = max(A, B) 1 1 1 4-99

MIN dst dst = min(A, B) 1 1 1 4-100

NEG src|, dst] dst = —src 1 1 1 4-119

NORM src|, dst] dst=src << TS 1 1 1 4-122
dst = norm(src, TS)

POLY Smem B = Smem << 16 1 1 3A, 3B 4-126
A =rnd(A(32-16) * T + B)

RND src|[, dst] dst = src + 215 1 1 1 4-142

SAT src saturate(src) 1 1 1 4-154

SQDST Xmem, Ymem B = B + A(32-16) * A(32-16) 1 1 7 4-160

A = (Xmem — Ymem) << 16

1 Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Smem.

Instruction Set Summary

2-7

Logical Operations

2.2 Logical Operations

This section summarizes the logical operation instructions. Table 2—7 through
Table 2—-11 list the instructions within the following functional groups:

AND instructions (Table 2-7)

OR instructions (Table 2—8 on page 2-8)
XOR instructions (Table 2—-9 on page 2-9)
Shift instructions (Table 2—-10 on page 2-9)
Test instructions (Table 2—11 on page 2-9)

Uoooo

Table 2—7. AND Instructions

Syntax Expression wt Cyclest Class Page
AND Smem, src src = src & Smem 1 1 3A, 3B 4-11
AND #lk[, SHFT], src|[, dst] dst = src & #lk << SHFT 2 2 2 4-11
AND #lk, 16, src|, dst] dst = src & #lk << 16 2 2 2 4-11
AND src[, SHIFT][, dst] dst = dst & src << SHIFT 1 1 1 4-11
ANDM #lk, Smem Smem = Smem & #lk 2 2 18A, 18B 4-13

T values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Smem.

Table 2-8. OR Instructions

Syntax Expression wt Cyclest Class Page
OR Smem, src src = src | Smem 1 1 3A, 3B 4-123
OR #lk[, SHFT], src[, dst] dst = src | #lk << SHFT 2 2 2 4-123
OR #lk, 16, src|[, dst] dst=src | #lk << 16 2 2 2 4-123
OR src[, SHIFT] [, dst] dst = dst | src << SHIFT 1 1 1 4-123
ORM #lk, Smem Smem = Smem | #lk 2 2 18A, 18B 4-125

T values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Smem.

2-8

Table 2-9. XOR Instructions

Logical Operations

Syntax Expression Wt Cycles T Class Page
XOR Smem, src src = src * Smem 1 1 3A, 3B 4-201
XOR #Ik[, SHFT,], src[, dst] dst = src ™ #lk << SHFT 2 2 2 4-201
XOR #lk, 16, src[, dst] dst = src M #lk << 16 2 2 2 4-201
XOR src|, SHIFT] [, dst] dst = dst ” src << SHIFT 1 1 1 4-201
XORM #lk, Smem Smem = Smem " #lk 2 2 18A,18B 4-203

1 values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect

addressing or absolute addressing with an Smem.

Table 2—-10. Shift Instructions

Syntax Expression Wt CyclesT Class Page
ROL src Rotate left with carry in 1 1 1 4-143
ROLTC src Rotate left with TC in 1 1 1 4-144
ROR src Rotate right with carry in 1 1 1 4-145
SFTA src, SHIFT [, dst] dst = src << SHIFT {arithmetic shift} 1 1 1 4-155
SFTC src if src(31) = src(30) then src = src << 1 1 1 1 4-157
SFTL src, SHIFT[, dst] dst = src << SHIFT {logical shift} 1 1 1 4-158
1 values for words (W) and cycles assume the use of DARAM for data.

Table 2—-11. Test Instructions

Syntax Expression wt Cycles T Class Page
BIT Xmem, BITC TC = Xmem(15 — BITC) 1 1 3A 4-21
BITF Smem, #lk TC = (Smem && #lk) 2 2 6A, 6B 4-22
BITT Smem TC = Smem(15 — T(3-0)) 1 1 3A, 3B 4-23
CMPM Smem, #lk TC = (Smem == #lk) 2 2 6A, 6B 4-33
CMPR CC, ARx Compare ARx with ARO 1 1 1 4-34

1 Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect

addressing or absolute addressing with an Smem.

Instruction Set Summary

2-9

Program-Control Operations

2.3 Program-Control Operations

This section summarizes the program-control instructions. Table 2—-12
through Table 2—-18 list the instructions within the following functional groups:

Branch instructions (Table 2—12)

Call instructions (Table 2-13 on page 2-11)

Interrupt instructions (Table 2—-14 on page 2-11)

Return instructions (Table 2—15 on page 2-12)

Repeat instructions (Table 2-16 on page 2-12)

Stack-manipulating instructions (Table 2—17 on page 2-13)
Miscellaneous program-control instructions (Table 2—-18 on page 2-13)

Uoououooo

Table 2—-12. Branch Instructions

Syntax Expression Wt CyclesT Class Page

B[D] pmad PC = pmad(15-0) 2 42T 29A 4-14

BACCID] src PC = src(15-0) 1 6/[47 30A 4-15

BANZ[D] pmad, Sind if (Sind £ 0) then PC = pmad(15-0) 2 4¢/%§/ 29A 4-16
[2

BC[D] pmad, cond[, cond[, cond]] if (cond(s)) then PC = pmad(15-0) 2 5%3% 31A 4-18
(31

FB[D] extpmad PC = pmad(15-0), 2 4/121M 29A 4-53

XPC = pmad(22-16)
FBACCID] src PC = src(15-0), XPC = src(22-16) 1 6/[4T] 30A 4-54

T Values for words (W) and cycles assume the use of DARAM for data.
¥ Conditions true

§ Condition false

1 Delayed instruction

2-10

Program-Control Operations

Table 2-13. Call Instructions

Syntax Expression Wt Cyclest Class Page

CALA[D] src ——-SP, PC + 1[3T] = TOS, 1 6/[41] 30B 4-25
PC = src(15-0)

CALL[D] pmad —-SP, PC + 2[4T] = TOS, 2 4/[28] 29B 4-27
PC = pmad(15-0)

CCID] pmad, cond|[, cond [, cond]] if (cond(s)) then — —SP, 2 538 31B 4-29
PC + 2[41] = TOS, [31

PC = pmad(15-0)

FCALA[D] src —-SP,PC +1[37] = TOS, 1 6/[41] 30B 4-55
PC = src(15-0), XPC = src(22-16)

FCALL[D] extpmad —-SP, PC + 2[4T] = TOS, 2 4/[21] 29B 4-57
PC = pmad(15-0),
XPC = pmad(22-16)

t Values for words (W) and cycles assume the use of DARAM for data.
* conditions true

§ Condition false

T Delayed instruction

Table 2-14. Interrupt Instructions

Syntax Expression Wt Cyclest Class Page
INTR K —-SP, + + PC = TOS, 1 3 35 4-65
PC = IPTR(15-7) + K << 2,
INTM=1
TRAP K —-SP, + + PC =TOS, 1 3 35 4-195

PC = IPTR(15-7) + K << 2

1 values for words (W) and cycles assume the use of DARAM for data.

Instruction Set Summary 2-11

Program-Control Operations

Table 2—15. Return Instructions

Syntax Expression wt Cyclest Class Page

FRET[D] XPC =TOS, ++ SP, PC = TOS, 1 6/[41] 34 4-61
++SP

FRETE[D] XPC = TOS, ++ SP, PC = TOS, 1 6/[41] 34 462

++SP, INTM =0

RCI[D] cond|[, cond [, cond]] if (cond(s)) then PC = TOS, ++SP 1 51/38/[31] 32 4-133

RET[D] PC =TOS, ++SP 1 5/[31] 32 4-139

RETE[D] PC =TOS, ++SP, INTM =0 1 5/[31] 32 4-140

RETF[D] PC = RTN, ++SP, INTM =0 1 3/[1") 33 4-141

T values for words (W) and cycles assume the use of DARAM for data.

¥ Conditions true

§ Condition false

T Delayed instruction

Table 2-16. Repeat Instructions

Syntax Expression wt Cycles t Class Page

RPT Smem Repeat single, RC = Smem 1 3 5A, 5B 4-146

RPT #K Repeat single, RC = #K 1 1 1 4-146

RPT #lk Repeat single, RC = #lk 2 2 2 4-146

RPTB[D] pmad Repeat block, RSA = PC + 2[41], 2 41121 29A 4-148
REA = pmad, BRAF =1

RPTZ dst, #lk Repeat single, RC = #lk, dst =0 2 2 2 4-150

T Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Smem.
1 Delayed instruction

2-12

Program-Control Operations

Table 2-17. Stack-Manipulating Instructions

Syntax Expression wt Cyclest Class Page
FRAME K SP=SP +K 1 1 1 4-60
POPD Smem Smem = TOS, ++SP 1 1 17A, 17B 4-127
POPM MMR MMR = TOS, ++SP 1 1 17A 4-128
PSHD Smem ——-SP, Smem = TOS 1 1 16A, 16B 4-131
PSHM MMR ——-SP, MMR =TOS 1 1 16A 4-132

1 values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Smem.

Table 2-18. Miscellaneous Program-Control Instructions

Syntax Expression Wt Cyclest Class Page
IDLE K idle(K) 1 4 36 463
MAR Smem If CMPT = 0, then modify ARX 1 1 1,2 4-92

If CMPT =1 and ARx # ARO, then
modify ARx, ARP = x
If CMPT =1 and ARx = ARO, then

modify AR(ARP)
NOP no operation 1 1 1 4-121
RESET software reset 1 3 35 4-138
RSBX N, SBIT STN (SBIT) =0 1 1 1 4-151
SSBX N, SBIT STN (SBIT) =1 1 1 1 4-166
XC n, cond|[, cond[, cond]] If (cond(s)) then execute the next n 1 1 1 4-198

instructions; n=1 or 2

1 Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Smem.

Instruction Set Summary 2-13

Load and Store Operations

2.4 Load and Store Operations

This section summarizes the load and store instructions. Table 2—19 through
Table 2—26 list the instructions within the following functional groups:

Load instructions (Table 2—-19)

Store instructions (Table 2—20 on page 2-15)

Conditional store instructions (Table 2—21 on page 2-16)

Parallel load and store instructions (Table 2—22 on page 2-16)

Parallel load and multiply instructions (Table 2—23 on page 2-16)
Parallel store and add/subtract instructions (Table 2—24 on page 2-17)
Parallel store and multiply instructions (Table 2—25 on page 2-17)
Miscellaneous load-type and store-type instructions (Table 2—26 on
page 2-18)

[EE NN NN

Table 2-19. Load Instructions

Syntax Expression wt Cycles T Class Page
DLD Lmem, dst dst = Lmem 1 1 9A, 9B 4-42
LD Smem, dst dst = Smem 1 1 3A, 3B 4-66
LD Smem, TS, dst dst=Smem << TS 1 1 3A, 3B 4-66
LD Smem, 16, dst dst = Smem << 16 1 1 3A, 3B 4-66
LD Smem |, SHIFT], dst dst = Smem << SHIFT 2 2 4A, 4B 4-66
LD Xmem, SHFT, dst dst = Xmem << SHFT 1 1 3A 4-66
LD #K, dst dst = #K 1 1 1 4-66
LD #lk[, SHFT], dst dst = #lk << SHFT 2 2 2 4-66
LD #lk, 16, dst dst = #lk << 16 2 2 2 4-66
LD src, ASM [, dst] dst = src << ASM 1 1 1 4-66
LD src[, SHIFT], dst dst = src << SHIFT 1 1 1 4-66
LD Smem, T T =Smem 1 1 3A, 3B 4-70
LD Smem, DP DP = Smem(8-0) 1 3 5A, 5B 4-70
LD #k9, DP DP = #k9 1 1 1 4-70
LD #k5, ASM ASM = #k5 1 1 1 4-70

T values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Lmem or Smem.

2-14

Table 2—-19. Load Instructions (Continued)

Load and Store Operations

Syntax Expression wt Cycles t Class Page
LD #k3, ARP ARP = #k3 1 1 1 4-70
LD Smem, ASM ASM = Smem(4-0) 1 1 3A, 3B 4-70
LDM MMR, dst dst = MMR 1 1 3A 4-73
LDR Smem, dst dst = rnd(Smem) 1 1 3A, 3B 4-78
LDU Smem, dst dst = uns(Smem) 1 1 3A, 3B 4-79
LTD Smem T =Smem, (Smem + 1) = Smem 1 1 24A, 24B 4-81

1 values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Lmem or Smem.

Table 2-20. Store Instructions

Syntax Expression WT Cycles T Class Page
DST src, Lmem Lmem = src 1 2 13A, 13B 4-47
ST T, Smem Smem=T 1 1 10A, 10B 4-167
ST TRN, Smem Smem = TRN 1 1 10A, 10B 4-167
ST #lk, Smem Smem = #lk 2 2 12A, 12B 4-167
STH src, Smem Smem = src << -16 1 1 10A,10B 4-169
STH src, ASM, Smem Smem = src << (ASM — 16) 1 1 10A,10B 4-169
STH src, SHFT, Xmem Xmem = src << (SHFT - 16) 1 1 10A 4-169
STH src[, SHIFT], Smem Smem = src << (SHIFT - 16) 2 2 11A, 11B 4-169
STL src, Smem Smem = src 1 1 10A, 10B 4-172
STL src, ASM, Smem Smem = src << ASM 1 1 10A, 10B 4-172
STL src, SHFT, Xmem Xmem = src << SHFT 1 1 10A, 10B 4-172
STL src[, SHIFT], Smem Smem = src << SHIFT 2 2 11A, 11B 4-172
STLM src, MMR MMR = src 1 1 10A 4-175
STM #lk, MMR MMR = #lk 2 2 12A 4-176

1 Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Lmem or Smem.

Instruction Set Summary

2-15

Load and Store Operations

Table 2-21. Conditional Store Instructions

Syntax Expression Wt Cyclest Class Page

CMPS src, Smem If src(31-16) > src(15-0) then 1 1 10A,10B 4-35
Smem = src(31-16)
If src(31-16) < src(15-0) then
Smem = src(15-0)

SACCD src, Xmem, cond If (cond) Xmem =src << (ASM-16) 1 1 15 4-152
SRCCD Xmem, cond If (cond) Xmem = BRC 1 1 15 4-165
STRCD Xmem, cond If (cond) Xmem =T 1 1 15 4-186

T Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Smem.

Table 2-22. Parallel Load and Store Instructions

Syntax Expression Wt Cyclest Class Page
ST src, Ymem Ymem = src << (ASM — 16) 1 1 14 4-178
|| LD Xmem, dst || dst = Xmem << 16

ST src, Ymem Ymem = src << (ASM — 16) 1 1 14 4-178
||LD Xmem, T [| T=Xmem

T values for words (W) and cycles assume the use of DARAM for data.

Table 2-23. Parallel Load and Multiply Instructions

Syntax Expression wt Cyclest Class Page
LD Xmem, dst dst = Xmem << 16 1 1 7 4-74
|| MAC Ymem, dst_ ||dst_=dst_+T*Ymem

LD Xmem, dst dst = Xmem << 16 1 1 7 4-74
|| MACR Ymem, dst_ || dst_=rnd(dst_+ T * Ymem)

LD Xmem, dst dst = Xmem << 16 1 1 7 4-76
|| MAS Ymem, dst_ ||dst_=dst_—T*Ymem

LD Xmem, dst dst = Xmem << 16 1 1 7 4-76
|| MASR Ymem, dst_ || dst_ =rnd(dst_—T * Ymem)

T values for words (W) and cycles assume the use of DARAM for data.

2-16

Load and Store Operations

Table 2-24. Parallel Store and Add/Subtract Instructions

Syntax Expression Wt Cyclest Class Page
ST src, Ymem Ymem = src << (ASM — 16) 1 1 14 4-177
|| ADD Xmem, dst || dst = dst_ + Xmem << 16

ST src, Ymem Ymem = src << (ASM — 16) 1 1 14 4-185
|| SUB Xmem, dst || dst = (Xmem << 16) — dst_

1 values for words (W) and cycles assume the use of DARAM for data.

Table 2-25. Parallel Store and Multiply Instructions

Syntax Expression Wt Cyclest Class Page
ST src, Ymem Ymem = src << (ASM — 16) 1 1 14 4-180
|| MAC Xmem, dst || dst = dst + T * Xmem

ST src, Ymem Ymem = src << (ASM — 16) 1 1 14 4-180
|| MACR Xmem, dst || dst = rnd(dst + T * Xmem)

ST src, Ymem Ymem = src << (ASM — 16) 1 1 14 4-182
|| MAS Xmem, dst || dst =dst— T * Xmem

ST src, Ymem Ymem = src << (ASM — 16) 1 1 14 4-182
|| MASR Xmem, dst || dst = rnd(dst — T * Xmem)

ST src, Ymem Ymem = src << (ASM — 16) 1 1 14 4-184
|| MPY Xmem, dst || dst =T * Xmem

tvalues for words (W) and cycles assume the use of DARAM for data.

Instruction Set Summary 2-17

Load and Store Operations

Table 2-26. Miscellaneous Load-Type and Store-Type Instructions

Syntax Expression wt Cyclest Class Page
MVDD Xmem, Ymem Ymem = Xmem 1 1 14 4-107
MVDK Smem, dmad dmad = Smem 2 2 19A, 19B 4-108
MVDM dmad, MMR MMR = dmad 2 2 19A 4-110
MVDP Smem, pmad pmad = Smem 2 4 20A, 20B 4-111
MVKD dmad, Smem Smem = dmad 2 2 19A, 19B 4-113
MVMD MMR, dmad dmad = MMR 2 2 19A 4-115
MVMM MMRx, MMRy MMRy = MMRx 1 1 1 4-116
MVPD pmad, Smem Smem = pmad 2 3 21A, 21B 4-117
PORTR PA, Smem Smem = PA 2 2 27A, 27B 4-129
PORTW Smem, PA PA = Smem 2 2 28A,28B 4-130
READA Smem Smem =A 1 5 25A,25B 4-136
WRITA Smem A =Smem 1 5 26A,26B 4-196

T values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect
addressing or absolute addressing with an Smem.

2-18

2.5 Repeating a Si

Repeating a Single Instruction

ngle Instruction

The '54x includes repeat instructions that cause the next instruction to be re-
peated. The number of times for the instruction to be repeated is obtained from
an operand of the instruction and is equal to this operand + 1. This value is
stored in the 16-bit repeat counter (RC) register. You cannot program the value
in the RC register; it is loaded by the repeat instructions only. The maximum
number of executions of a given instruction is 65 536. An absolute program or
data address is automatically incremented when the single-repeat feature is
used.

Once a repeat instruction is decoded, all interrupts, including NMI but not RS,
are disabled until the completion of the repeat loop. However, the '54x does
respond to the HOLD signal while executing a repeat loop—the response de-
pends on the value of the HM bit of status register 1 (ST1).

The repeat function can be used with some instructions, such as multiply/
accumulate and block moves, to increase the execution speed of these
instructions. These multicycle instructions (Table 2—27) effectively become
single-cycle instructions after the first iteration of a repeat instruction.

Table 2-27. Muilticycle Instructions That Become Single-Cycle Instructions When Repeated

Instruction Description #Cycles T
FIRS Symmetrical FIR filter 3
MACD Multiply and move result in accumulator with delay 3
MACP Multiply and move result in accumulator 3
MVDK Data-to-data move 2
MVDM Data-to-MMR move 2
MVDP Data-to-program move 4
MVKD Data-to-data move 2
MVMD MMR-to-data move 2
MVPD Program-to-data move 3
READA Read from program-memory to data memory 5
WRITA Write data memory to program memory 5
T Number of cycles when instruction is not repeated

Instruction Set Summary 2-19

Repeating a Single Instruction

Single data-memory operand instructions cannot be repeated if a long offset
modifier or an absolute address is used (for example, *ARn(Ik), *+ARn(Ik),
*+ARN(Ik)% and *(Ik)). Instructions listed in Table 2—28 cannot be repeated
using RPT or RPTZ instructions.

Table 2-28. Nonrepeatable Instructions

Instruction Description

ADDM Add long constant to data memory

ANDM AND data memory with long constant

B[D] Unconditional branch

BACC|D] Branch to accumulator address

BANZ[D] Branch on auxiliary register not 0

BC[D] Conditional branch

CALA[D] Call to accumulator address

CALL[D] Unconditional call

CC[D] Conditional call

CMPR Compare with auxiliary register

DST Long word (32-bit) store

FB[D] Far branch unconditionally

FBACCID] Far branch to location specified by accumulator
FCALA[D] Far call subroutine at location specified by accumulator
FCALL[D] Far call unconditionally

FRET[D] Far return

FRETE[D] Enable interrupts and far return from interrupt
IDLE Idle instructions

INTR Interrupt trap

LD ARP Load auxiliary register pointer (ARP)

LD DP Load data page pointer (DP)

MVMM Move memory-mapped register (MMR) to another MMR
ORM OR data memory with long constant

2-20

Repeating a Single Instruction

Table 2-28. Nonrepeatable Instructions (Continued)

Instruction Description

RCI[D] Conditional return

RESET Software reset

RET[D] Unconditional return

RETE[D] Return from interrupt

RETF[D] Fast return from interrupt

RND Round accumulator

RPT Repeat next instruction

RPTBI[D] Block repeat

RPTZ Repeat next instruction and clear accumulator
RSBX Reset status register bit

SSBX Set status register bit

TRAP Software trap

XC Conditional execute

XORM XOR data memory with long constant

Instruction Set Summary

2-21

2-22

Chapter 3

Instruction Classes and Cycles

Instructions are classified into several categories, or classes, according to
cycles required. This chapter describes the instruction classes. Because a
single instruction can have multiple syntaxes and types of execution, it can ap-
pear in multiple classes.

The tables in this chapter show the number of cycles required for a given '54x
instruction to execute in a given memory configuration when executed as a
single instruction and when executed in the repeat mode. Tables are also pro-
vided for a single data-memory operand access used with along constant. The
column headings in the tables indicate the program source location. These
headings are defined as follows:

ROM The instruction executes from internal program ROM.
SARAM The instruction executes from internal single-access RAM.
DARAM The instruction executes from internal dual-access RAM.
External The instruction executes from external program memory.

If a class of instructions requires memory operand(s), the row divisions in the
tables indicate the location(s) of the operand(s). These locations are defined
as follows:

DARAM The operand is in internal dual-access RAM.
SARAM The operand is in internal single-access RAM.
DROM The operand is in internal data ROM.

PROM The operand is in internal program ROM.
External The operand is in external memory.

MMR The operand is a memory-mapped register.

The number of cycles required for each instruction is given in terms of the
processor machine cycles (the CLKOUT period). The additional wait states for
program/data memory accesses and I/O accesses are defined as follows:

d Data-memory wait states—the number of additional clock cycles the
device waits for external data-memory to respond to an access.

Instruction Classes and Cycles

3-2

io I/0 wait states—the number of additional clock cycles the device waits
for an external I/O to respond to an access.

n Repetitions—the number of times a repeated instruction is executed.
nd Data-memory wait states repeated n times.
np Program-memory wait states repeated n times.

npd Program-memory wait states repeated n times.

p Program-memory wait states—the number of additional clock cycles
the device waits for external program memory to respond to an
access.

pd Program-memory wait states—the number of additional clock cycles

the device waits for external program memory to respond to an access
as a program data operand.

These variables can also use the subscripts src, dst, and code to indicate
source, destination, and code, respectively.

All reads from external memory take at least one instruction cycle to complete,
and all writes to external memory take at least two instruction cycles to com-
plete. These external accesses take longer if additional wait-state cycles are
added using the software wait-state generator or the external READY input.
However, internal to the CPU all writes to external memory take only one cycle
as long as no other access to the external memory is in process at the same
time. This is possible because the instruction pipeline takes only one cycle to
request an external write access, and the external bus interface unit completes
the write access independently.

The instruction cycles are based on the following assumptions:

(1 Atleast five instructions following the current instruction are fetched from
the same memory section (internal or external) as the current instruction,
except in instructions that cause a program counter (PC) discontinuity,
such as a branch or call.

(1 When executing a single instruction, there is no pipeline or bus conflict be-
tween the currentinstruction and any other instruction in the pipeline. The
only exception is the conflict between the instruction fetch and the memory
read/write access (if any) of the instruction under consideration.

[In single-instruction repeat mode, all conflicts caused by the pipelined
execution of that instruction are considered.

Class 1

Mnemonics

Cycles

Class 1

1word, 1 cycle. No operand, or short-immediate or register operands and no memory

operands.
ABS MACA[R] NORM SFTA
ADD MAR OR SFTC
AND MASA[R] RND SFTL
CMPL MAX ROL SQUR
CMPR MIN ROLTC SSBX
EXP MPYA ROR SUB
FRAME MVMM RPT XC
LD NEG RSBX XOR
LD T/DP/ASM/ARP NOP SAT
Cycles for a Single Execution
Program
ROM/SARAM DARAM External
1 1 1+p
Cycles for a Repeat Execution
Program
ROM/SARAM DARAM External
n n n+p

Instruction Classes and Cycles

3-3

Class 2

Class 2

Mnemonics

Cycles

3-4

2 words, 2 cycles. Long-immediate operand and no memory operands.

ADD MAC OR SUB
AND MAR RPT XOR
LD MPY RPTZ
Cycles for a Single Execution
Program
ROM/SARAM DARAM External
2 2 2+2p
Cycles for a Repeat Execution
Program
ROM/SARAM DARAM External
n+1 n+1 n+1+2p

Class 3A

Mnemonics

Cycles

Class 3A

1 word, 1 cycle. Single data-memory (Smem or Xmem) read operand or MMR read

operand.

ADD LDM MPYA SUBB
ADDC LDR MPYU SUBC
ADDS LDU OR SUBS
AND MACIR] POLY XOR
BIT MACA[R] SQUR
BITT MASIR] SQURA
LD MASA SQURS
LD T/DP/ASM/ARP MPY[R] SUB

Cycles for a Single Execution
Operand Program
Smem ROM/SARAM DARAM External
DARAM 1 1,21 1+p
SARAM 1,2t 1 1+p
DROM 1,2t 1 1+p
External 1+d 1+d 2+d+p
MMR? 1 1 1+p
t Operand and code in same memory block
0 Add one cycle for peripheral memory-mapped access.

Cycles for a Repeat Execution
Operand Program
Smem ROM/SARAM DARAM External
DARAM n n, n+1t n+p
SARAM n, n+1t n n+p
DROM n, n+1t n n+p
External n+nd n+nd n+1+nd+p
MMR® n n n+p

T Operand and code in same memory block

O Add n cycles for peripheral memory-mapped access.

Instruction Classes and Cycles 3-5

Class 3B

Class 3B

Mnemonics

Cycles

3-6

2 words, 2 cycles. Single data-memory (Smem) read operand using long-offset indi-
rect addressing.

ADD LDU OR SUBS
ADDC MACIR] POLY XOR
ADDS MACA[R] SQUR

AND MASIR] SQURA

BITT MASA SQURS

LD MPY[R] SUB

LD T/IDP/ASM/ARP MPYA SUBB

LDR MPYU SUBC

Cycles for a Single Execution With Long-Offset Modifier

Operand Program

Smem ROM/SARAM DARAM External
DARAM 2 2,3t 2+2p
SARAM 2,3t 2 2+2p
DROM 2,3t 2 2+2p
External 2+d 2+d 3+d+2p
MMR? 2 2 2+2p

t Operand and code in same memory block
¢ Add one cycle for peripheral memory-mapped access.

Class 4A

Mnemonics

Cycles

2 words, 2 cycles

. Single data-memory (Smem) read operand.

Class 4A

ADD LD SUB

Cycles for a Single Execution
Operand Program
Smem ROM/SARAM DARAM External
DARAM 2 2,31 2+2p
SARAM 2,3t 2 2+2p
DROM 2, 3T 2 2+2p
External 2+d 2+d 3+d+2p
MMR? 2 2 242p
T Operand and code in same memory block
0 Add one cycle for peripheral memory-mapped access.

Cycles for a Repeat Execution
Operand Program
Smem ROM/SARAM DARAM External
DARAM n+1 n+1, n+2t n+1+2p
SARAM n+1, n+2t n+1 n+1+2p
DROM n+1, n+21 n+1 n+1+2p
External n+1+nd n+1+nd n+2+nd+2p
MMR? n+1 n+1 n+1+2p

T Operand and code in same memory block

O Add n cycles for peripheral memory-mapped access.

Instruction Classes and Cycles 3-7

Class 4B

Class 4B 3 words, 3 cycles. Single data-memory (Smem) read operand using long-offset indi-
rect addressing.

Mnemonics ADD LD SuUB

Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Smem ROM/SARAM DARAM External
DARAM 3 3, 4t 3+3p
SARAM 3,47 3 3+3p
DROM 3,47 3 3+3p
External 3+d 3+d 4+d+3p
MMR? 3 3 3+3p

t Operand and code in same memory block
O Add one cycle for peripheral memory-mapped access.

3-8

Class 5A

Mnemonics

Cycles

Class 5B

Mnemonics

Cycles

Class 5A / Class 5B

1 word, 3 cycles. Single data-memory (Smem) read operand (with DP destination for

load instruction).

LD RPT

Cycles for a Single Execution
Operand Program
Smem ROM/SARAM DARAM External
DARAM 3 3 3+p
SARAM 3 3 3+p
DROM 3 3 3+p
External 3+d 3+d 3+d+p
MMR? 3 3 3+p

0 Add one cycle for peripheral memory-mapped access.

2 words, 4 cycles. Single data-memory (Smem) read operand using long-offset indi-
rect addressing (with DP destination for load instruction).

LD RPT

Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Smem ROM/SARAM DARAM External
DARAM 4 4 4+2p
SARAM 4 4 4+2p
DROM 4 4 4+2p
External 4+d 4+d 4+d+2p
MMR© 4 4 4+2p

0 Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-9

Class 6A

Class 6A 2 words, 2 cycles. Single data-memory (Smem) read operand and single
long-immediate operand.

Mnemonics BITF CMPM MAC MPY
Cycles Cycles for a Single Execution
Operand Program
Smem ROM/SARAM DARAM External
DARAM 2 2,3t 2+2p
SARAM 2,3t 2 2+2p
DROM 2,3t 2 2+2p
External 2+d 2+d 3+d+2p
MMR? 2 2 2+2p

t Operand and code in same memory block
¢ Add one cycle for peripheral memory-mapped access.

Cycles for a Repeat Execution

Operand Program

Smem ROM/SARAM DARAM External
DARAM n+1 n+1, n+2t n+1+2p
SARAM n+1, n+21 n+1 n+1+2p
DROM n+1, n+21 n+1 n+1+2p
External n+1+nd n+1+nd n+2+nd+2p
MMR? n+1 n+1 n+1+2p

T Operand and code in same memory block
0 Add n cycles for peripheral memory-mapped access.

3-10

Class 6B

Class 6B 3 words, 3 cycles. Single data-memory (Smem) read operand using long-offset indi-
rect addressing and single long-immediate operand.

Mnemonics BITF CMPM MAC MPY

Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Smem ROM/SARAM DARAM External
DARAM 3 3, 4t 3+3p
SARAM 3, 47 3 3+3p
DROM 3, 47 3 3+3p
External 3+d 3+d 4+d+3p
MMR® 3 3 3+3p

T Operand and code in same memory block
0 Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-11

Class 7

Class 7

Mnemonics

3-12

1 word, 1 cycle. Dual data-memory (Xmem and Ymem) read operands.

ABDST LD||MAS[R] MACSU SQDST
ADD LMS MASIR] SUB
LD||MACIR] MACIR] MPY

Cycles

Class 7

Cycles for a Single Execution

Operand Program
Xmem Ymem ROM/SARAM DARAM External
DARAM DARAM 1 1, 2t 1+p
SARAM 1,2t 1, 2t 1+p
DROM 1,2t 1, 2t 1+p
External 1+d 1+d, 2ll 2+d+p
SARAM DARAM 1,2t 1 1+p
SARAM 1, 2t 3% 1, 2t 1+p, 2%
DROM 1,2t 1 1+p
External 1+d, 2lI 1+d 2+d+p
DROM DARAM 1,2t 1 1+p
SARAM 1,2t 1,2t 1+p, 2%
DROM 1,2t 3% 1, 2t 1+p, 2%
External 1+d, 2ll 1+d 2+d+p
External DARAM 1+d 1+d 2+d+p
SARAM 1+d, 2ll 1+d 2+d+p
DROM 1+d, 2ll 1+d 2+d+p
External 2+2d 2+2d 3+2d+p
MMR? DARAM 1 1 1+p
SARAM 1,2t 1 1+p
DROM 1,2t 1 1+p
External 1+d 1+d 2+d+p

T Operand and code in same memory block *Two operands in same memory block when
¥ Two operands and code in same memory p=0

block O Add one cycle for peripheral memory-
Il One operand and code in same memory mapped access.

block whend =0

Instruction Classes and Cycles 3-13

Class 7

Cycles for a Repeat Execution

Operand Program

Xmem Ymem ROM/SARAM DARAM External
DARAM DARAM n n, n+1t n+p

SARAM n, n+1t n, n+1t n+p

DROM n, n+1t n, n+1t n+p

External n+nd n+nd, 1+nll n+1+nd+p
SARAM DARAM n, n+1t n n+p

SARAM n, n+1t, 2n#, n, 2n# n+p, 2n (p = 0)#,

2n+1% 2n-1+p (p 2 1)#

DROM n, n+1t n n+p

External n+nd, n+1ll n+nd n+1+nd+p
DROM DARAM n, n+1t n n+p

SARAM n, n+1t n n+p

DROM n, n+1t, 2n#, n, 2n# n+p, 2n (p = 0)#,

2n+1% 2n-1+p (p = 1)#

External n+nd, n+1ll n+nd n+1+nd+p
External DARAM n+nd n+nd n+1+nd+p

SARAM n+nd, n+1ll n+nd n+1+nd+p

DROM n+nd, n+1ll n+nd n+1+nd+p

External 2n+2nd 2n+2nd 2n+1+2nd+p
MMR? DARAM n n n+p

SARAM n, n+1t n n+p

DROM n, n+1t n n+p

External n+nd n+nd n+1+nd+p

t Operand and code in same memory block
¥ Two operands and code in same memory

block

#Two operands in same memory block

3-14

Il One operand and code in same memory

block when d =0

OAdd n cycles for peripheral memory-

mapped access.

Class 8

Class 8 2words, 3 cycles. Dual data-memory (Xmem and Ymem) read operands and a single
program-memory (pmad) operand.
Mnemonics FIRS
Cycles Cycles for a Single Execution
Operand Program
pmad Xmem Ymem ROM/SARAM DARAM External
DARAM DARAM DARAM 3,471 3,471 3+2p,
4+2pt
SARAM/ 3,4t 3, 4t 3+2p,
DROM 4+2pt
External 3+d, 4+dt 3+d, 4+dt 3+d+2p,
4+d+2pt
SARAM/ DARAM 3 3 3+2p
DROM
SARAM/ 3, 4% 3, 4% 3+2p,
DROM 4+2pt
External 3+d 3+d 3+d+2p
External DARAM 3+d 3+d 3+d+2p
SARAM/ 3+d 3+d 3+d+2p
DROM
External 4+2d 4+2d 4+2d+2p
SARAM/ DARAM DARAM 3 3 3+2p
DROM
SARAM/ 3,48 3,48 3+2p,
DROM 4+2p8
External 3+d 3+d 3+d+2p

T Xmem and pmad in same memory block

¥ Xmem and Ymem in same memory block

8 Ymem and pmad in same memory block

I Xmem, Ymem, and pmad in same memory block

Instruction Classes and Cycles

3-15

Class 8

Cycles for a Single Execution (Continued)

Operand Program
pmad Xmem Ymem ROM/SARAM DARAM External
SARAM/ DARAM 3,47 3,47 3+2p,
DROM 4+2pt
SARAM/ 3, 4%, 51 3, 4%, 51 3+2p,
DROM 4+2pT,
5+2pf
External 3+d, 4+dt 3+d, 4+dt 3+d+2p,
4+d+2pt
External DARAM 3+d 3+d 3+2p
SARAM/ 3+d, 4+d8 3+d, 4+d8 3+2p,
DROM 4+d+2p8
External 4+2d 4+2d 4+2d+2p
External DARAM DARAM 3+pd 3+pd 3+pd+2p
SARAM/ 3+pd 3+pd 3+pd+2p
DROM
External 4+pd+d 4+pd+d 4+pd+d+2p
SARAM/ DARAM 3+pd 3+pd 3+pd+2p
DROM
SARAM/ 3+pd, 4+pd¥ 3+pd, 4+pd¥ 3+pd+2p,
DROM 4+pd+2p*
External 4+pd+d 4+pd+d 4+pd+d+2p
External DARAM 4+pd+d 4+pd+d 4+pd+d+2p
SARAM/ 4+pd+d 4+pd+d 4+pd+d+2p
DROM
External 5+pd+2d 5+pd+2d 5+pd+2d
+2p

T Xmem and pmad in same memory block

¥ Xmem and Ymem in same memory block

& Ymem and pmad in same memory block

T Xmem, Ymem, and pmad in same memory block

3-16

Cycles for a Repeat Execution

Class 8

Operand Program
ROM/
pmad Xmem Ymem SARAM DARAM External
DARAM DARAM DARAM n+2, 2n+2t n+2, 2n+2t n+2+2p,
2n+2+2pt
SARAM/ n+2, 2n+2*t n+2, 2n+2*t n+2+2p,
DROM 2n+2+2pt
External n+2+nd, n+2+nd, n+2+nd+2p,
2n+2+ndt 2n+2+ndt 2n+2+nd
+2pt
SARAM/ DARAM n+2 n+2 n+2+2p
DROM
SARAM/ n+2, 2n+2% n+2, 2n+2% n+2+2p,
DROM 2n+2+2pt
External n+2+nd n+2+nd n+2+nd+2p
External DARAM n+2+nd n+2+nd n+2+nd+2p
SARAM/ n+2+nd n+2+nd n+2+nd+2p
DROM
External 2n+2+2nd 2n+2+2nd 2n+2+2nd
+2p
SARAM/ DARAM DARAM n+2 n+2 n+2+2p
DROM
SARAM/ n+2, 2n+28 n+2, 2n+28 n+2+2p,
DROM 2n+2+2p8
External n+2+nd n+2+nd n+2+nd+2p

T Xmem and pmad in same memory block
¥ Xmem and Ymem in same memory block
8 Ymem and pmad in same memory block
i Xmem, Ymem, and pmad in same memory block

Instruction Classes and Cycles 3-17

Class 8

3-18

Cycles for a Repeat Execution (Continued)

Operand Program
ROM/
pmad Xmem Ymem SARAM DARAM External
SARAM/ DARAM n+2, 2n+2t n+2, 2n+2t n+2+2p,
DROM 2n+2+2pt
SARAM/ n+2, 2n+2T, n+2, 2n+2t, n+2+2p,
DROM 3n+21 3n+21 2n+2+2pf,
3n+2+2pT
External n+2+nd, n+2+nd, n+2+nd+2p,
2n+2+ndt 2n+2+ndt 2n+2+nd
+2pt
External DARAM n+2+nd n+2+nd n+2+nd
SARAM/ n+2+nd, n+2+nd, n+2+nd+2p,
DROM 2n+2+nd8 2n+2+nd8 2n+2+nd
+2p8
External 2n+2+2nd 2n+2+2nd 2n+2+2nd
+2p
External DARAM DARAM n+2+npd n+2+npd n+2+npd+2p
SARAM/ n+2+npd n+2+npd n+2+npd+2p
DROM
External 2n+2+npd+nd 2n+2+npd+nd 2n+2+npd
+nd+2p
SARAM/ DARAM n+2+npd n+2+npd n+2+npd+2p
DROM
SARAM/ n+2+npd, n+2+npd, n+2+npd+2p,
DROM 2n+2+npd* 2n+2+npd* 2n+2+npd
+2p¥
External 2n+2+npd+nd 2n+2+npd+nd 2n+2+npd
+nd+2p

T Xmem and pmad in same memory block
¥ Xmem and Ymem in same memory block
8§ Ymem and pmad in same memory block
T Xmem, Ymem, and pmad in same memory block

Class 8

Cycles for a Repeat Execution (Continued)

Operand Program

ROM/
pmad Xmem Ymem SARAM DARAM External

External DARAM 2n+2+npd+nd 2n+2+npd+nd 2n+2+npd
+nd+2p

SARAM/ 2n+2+npd+nd 2n+2+npd+nd 2n+2+npd
DROM +nd+2p

External 3n+2+npd+2nd 3n+2+npd+2nd 3n+2+npd
+2nd+2p

T Xmem and pmad in same memory block

¥ Xmem and Ymem in same memory block

8 Ymem and pmad in same memory block

I Xmem, Ymem, and pmad in same memory block

Instruction Classes and Cycles 3-19

Class 9A

Class 9A 1 word, 1 cycle. Single long-word data-memory (Lmem) read operand.

Mnemonics DADD DLD DSADT DSUBT
DADST DRSUB DSUB

Cycles Cycles for a Single Execution
Operand Program
Lmem ROM/SARAM DARAM External
DARAM 1 1,2t 1+p
SARAM 1,2t 1 1+p
DROM 1,2t 1 1+p
External 2+2d 2+2d 3+2d+p

t Operand and code in same memory block

Cycles for a Repeat Execution

Operand Program

Lmem ROM/SARAM DARAM External
DARAM n n, n+1t n+p

SARAM n, n+1t n n+p

DROM n, n+1t n n+p
External 2n+2nd 2n+2nd 1+2n+2nd+p

t Operand and code in same memory block

3-20

Class 9B

Class 9B 2 words, 2 cycles. Single long-word data-memory (Lmem) read operand using long-
offset indirect addressing.

Mnemonics DADD DLD DSADT DSUBT
DADST DRSUB DSUB

Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Lmem ROM/SARAM DARAM External
DARAM 2 2,3t 2+2p
SARAM 2,3t 2 2+2p
DROM 2,3t 2 2+2p
External 3+2d 3+2d 4+2d+2p

T Operand and code in same memory block

Instruction Classes and Cycles 3-21

Class 10A

Class 10A 1 word, 1 cycle. Single data-memory (Smem or Xmem) write operand or an MMR
write operand.

Mnemonics CMPS STH STLM
ST STL

Cycles Cycles for a Single Execution
Operand Program
Smem ROM/SARAM DARAM External
DARAM 1 1 1+p
SARAM 1,2t 1 1+p
External 1 1 4+d+p
MMR? 1 1 1+p

t Operand and code in same memory block
© Add n cycles for peripheral memory-mapped access.

Cycles for a Repeat Execution

Operand Program

Smem ROM/SARAM DARAM External
DARAM n n n+p
SARAM n, n+1t n n+p
External 2n-1+(n-1)d 2n-1+(n-1)d 2n+2+nd+p
MMR? n n n+p

t Operand and code in same memory block
O Add n cycles for peripheral memory-mapped access.

3-22

Class 10B

Class 10B 2 words, 2 cycles. Single data-memory (Smem or Xmem) write operand using long-
offset indirect addressing.

Mnemonics CMPS ST STH STL

Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Smem ROM/SARAM DARAM External
DARAM 2 2 2+2p
SARAM 2,3t 2 2+2p
External 2 2 5+d+2p
MMR? 2 2 2+2p

T Operand and code in same memory block
0 Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-23

Class 11A

Class 11A 2 words, 2 cycles. Single data-memory (Smem) write operand.

Mnemonics STH STL

Cycles Cycles for a Single Execution
Operand Program
Smem ROM/SARAM DARAM External
DARAM 2 2 2+2p
SARAM 2,3t 2 2+2p
External 2 2 5+d+2p
MMR® 2 2 2+2p

t Operand and code in same memory block
0 Add one cycle for peripheral memory-mapped access.

Cycles for a Repeat Execution

Operand Program

Smem ROM/SARAM DARAM External
DARAM n+l n+1 n+1+2p
SARAM n+1, n+2t n+1 n+1+2p
External 2n+(n-1)d 2n+(n-1)d 2n+3+nd+2p
MMR? n+1 n+1 n+1+2p

t Operand and code in same memory block
O Add n cycles for peripheral memory-mapped access.

3-24

Class 11B

Class 11B 3 words, 3 cycles. Single data-memory (Smem) write operand using long-offset indi-
rect addressing.

Mnemonics STH STL

Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Smem ROM/SARAM DARAM External
DARAM 3 3 3+3p
SARAM 3,4t 3 3+3p
External 3 3 6+d+3p
MMR? 3 3 3+3p

T Operand and code in same memory block
0 Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-25

Class 12A

Class 12A

Mnemonics

Cycles

3-26

2 words, 2 cycles. Single data-memory (Smem) write operand or MMR write operand.

ST STM

Cycles for a Single Execution
Operand Program
Smem ROM/SARAM DARAM External
DARAM 2 2 2+2p
SARAM 2,3t 2 2+2p
External 2 2 5+d+2p
MMR? 2 2 2+2p
t Operand and code in same memory block
0 Add one cycle for peripheral memory-mapped access.

Cycles for a Repeat Execution
Operand Program
Smem ROM/SARAM DARAM External
DARAM 2n 2n 2n+2p
SARAM 2n, 2n+17 2n 2n+2p
External 2n+(n-1)d 2n+(n-1)d 2n+3+nd+p
MMR? 2n 2n 2n+2p

t Operand and code in same memory block

O Add n cycles for peripheral memory-mapped access.

Class 12B

Class 12B 3 words, 3 cycles. Single data-memory (Smem) write operand using long-offset
indirect addressing.

Mnemonics ST

Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Smem ROM/SARAM DARAM External
DARAM 3 3 3+3p
SARAM 3,4t 3 3+3p
External 3 3 6+d+3p
MMR? 3 3 3+3p

T Operand and code in same memory block
0 Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-27

Class 13A

Class 13A

Mnemonics

Cycles

3-28

1 word, 2 cycles. Single long-word data-memory (Lmem) write operand.

DST

Cycles for a Single Execution
Operand Program
Lmem ROM/SARAM DARAM External
DARAM 2 2 2+p
SARAM 2,4t 2 2+p
External 3+d 3+d 8+2d+p
MMR® 2 2 2+p
t Operand and code in same memory block
¢ Add one cycle for peripheral memory-mapped access.

Cycles for a Repeat Execution
Operand Program
Lmem ROM/SARAM DARAM External
DARAM 2n 2n 2n+p
SARAM 2n, 2n+2t 2n 2n+p
External 4n-1+(2n-1)d 4n-1+(2n-1)d 4n+4+2nd+p
MMR® 2n 2n 2n+p

T Operand and code in same memory block
O Add n cycles for peripheral memory-mapped access.

Class 13B

Class 13B 2 words, 3 cycles. Single long-word data-memory (Lmem) write operand using long-

offset indirect addressing.

Mnemonics DST

Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Lmem ROM/SARAM DARAM External
DARAM 3 3 3+2p
SARAM 3,5t 3 3+2p
External 4+d 4+d 9+2d+2p
MMR? 3 3 3+2p

T Operand and code in same memory block

0 Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-29

Class 14

Class 14 1 word, 1 cycle. Dual data-memory (Xmem and Ymem) read and write operands.
Mnemonics MVDD ST||ILD ST||MASIR] ST||SUB
ST||ADD ST|IMACIR] ST||IMPY
Cycles Cycles for a Single Execution
Operand Program
Xmem Ymem ROM/SARAM DARAM External
DARAM DARAM 1 1,2t 1+p
SARAM 1,21 1,2t 1+p
External 1 1, 2t 4+d+p
SARAM DARAM 1, 2t 1 1+p
SARAM 1, 2%, 3% 1 1+p
External 1,2t 1 4+d+p
DROM DARAM 1,2t 1 1+p
SARAM 1,2t 1 1+p
External 1, 2t 1 4+d+p
External DARAM 1+d 1+d 2+d+p
SARAM 1+d, 2+dt 1+d 2+d+p
External 1+d 1+d 5+2d+p
MMR? DARAM 1 1, 2t 1+p
SARAM 1,2t 1 1+p
External 1 1 4+d+p

1 Operand and code in same memory block
* Two operands and code in same memory block
0 Add one cycle for peripheral memory-mapped access.

3-30

Cycles for a Repeat Execution

Class 14

Operand Program
Xmem Ymem ROM/SARAM DARAM External
DARAM DARAM n n, n+1t n+p
SARAM n, n+1t n, n+1t n+p
External 2n-1+(n-1)d 2n—-1+(n-1)d, 2n+2+nd+p
2n+(n-1)dt
SARAM DARAM n, n+1t n n+p
SARAM n, n+1t, 2n#, n, 2n# n+p, 2n+p#
2n+1%#
External 2n-1+(n-1)d, 2n-1+(n-1)d, 2n+2+nd+p
2n+(n-1)dt 2n+(n-1)dt
DROM DARAM n, n+1t n, n+1t n+p
SARAM n, n+1t n n+p
External 2n-1+(n-1)d, 2n-1+(n-1)d 2n+2+nd+p
2n+(n-1)dt
External DARAM n+nd n+nd n+1+nd+p
SARAM n+nd, n+1+ndt n+nd n+1+nd+p
External 4n-3+(2n-1)d 4n-3+(2n-1)d 4n+1+2nd+p
MMR? DARAM n n, 2nt n+p
SARAM n, n+1t n n+p
External 2n-1+(n-1)d 2n-1+(n-1)d 2n+2+nd+p

T Operand and code in same memory block
¥ Two operands and code in same memory

block

mapped access.

Two operands in same memory block
OAdd n cycles for peripheral memory-

Instruction Classes and Cycles 3-31

Class 15

Class 15 1 word, 1 cycle. Single data-memory (Xmem) write operand.

Mnemonics SACCD SRCCD STRCD

Cycles Cycles for a Single Execution
Operand Program
Xmem ROM/SARAM DARAM External
DARAM 1 1 1+p
SARAM 1,2t 1 1+p
External 1 1 4+d+p
MMR® 1 1 1+p

t Operand and code in same memory block
0 Add one cycle for peripheral memory-mapped access.

Cycles for a Repeat Execution

Operand Program

Xmem ROM/SARAM DARAM External
DARAM n n n+p
SARAM n, n+1t n n+p
External 2n-1+(n-1)d 2n-1+(n-1)d 2n+2+nd+p
MMR? n n n+p

t Operand and code in same memory block
O Add n cycles for peripheral memory-mapped access.

3-32

Class 16A

Class 16A 1 word, 1 cycle. Single data-memory (Smem) read operand or MMR read operand,
and a stack-memory write operand.

Mnemonics PSHD PSHM
Cycles Cycles for a Single Execution
Operand Program
Smem Stack ROM/SARAM DARAM External
DARAM DARAM 1 1,2t 1+p
SARAM 1,2t 1, 2t 1+p
External 1 1,2t 4+d+p
SARAM DARAM 1,2t 1 1+p
SARAM 1,2t 3% 1 1+p
External 1,2t 1 4+d+p
DROM DARAM 1,2t 1 1+p
SARAM 1,2t 1 1+p
External 1,2t 1 4+d+p
External DARAM 1+d 1+d 2+d+p
SARAM 1+d, 2+dt 1+d 2+d+p
External 1+d 1+d 5+2d+p
MMR? DARAM 1 1,2t 1+p
SARAM 1,2t 1 1+p
External 1 1 4+d+p

T Operand and code in same memory block
¥ Two operands and code in same memory block
O Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-33

Class 16A

3-34

Cycles for a Repeat Execution

Operand Program
Smem Stack ROM/SARAM DARAM External
DARAM DARAM n n, n+1t n+p
SARAM n, n+1t n, n+1t n+p
External 2n-1+(n-1)d 2n-1+(n-1)d, 2n+2+nd+p
2n+(n-1)dt
SARAM DARAM n, n+1t n n+p
SARAM n, n+1t, 2n#, n, 2n# n+p, 2n+p#
2n+1%
External 2n-1+(n-1)d, 2n-1+(n-1)d, 2n+2+nd+p
2n+(n-1)dt 2n+(n-1)dt
DROM DARAM n, n+1t n, n+1t n+p
SARAM n, n+1t n n+p
External 2n-1+(n-1)d, 2n-1+(n-1)d 2n+2+nd+p
2n+(n-1)dt
External DARAM n+nd n+nd n+1+nd+p
SARAM n+nd, n+1+ndt n+nd n+1+nd+p
External 4n-3+(2n-1)d 4n-3+(2n-1)d 4n+1+2nd+p
MMR® DARAM n n, 2nt n+p
SARAM n, n+1t n n+p
External 2n-1+(n-1)d 2n-1+(n-1)d 2n+2+nd+p

t Operand and code in same memory block
¥ Two operands and code in same memory

block

mapped access.

Two operands in same memory block
OAdd n cycles for peripheral memory-

Class 16B

Class 16B 2 words, 2 cycles. Single data-memory (Smem) read operand using long-offset indi-
rect addressing and a stack-memory write operand.

Mnemonics PSHD
Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Smem Stack ROM/SARAM DARAM External
DARAM DARAM 2 2,3t 2+2p
SARAM 2, 3T 2, 3T 2+2p
External 2 2,3t 5+d+2p
SARAM DARAM 2,3T 2 2+2p
SARAM 2,31, 4% 2 2+2p
External 2,3t 2 5+d+2p
DROM DARAM 2,3t 2 2+2p
SARAM 2, 3" 2 2+2p
External 2,3t 2 5+d+2p
External DARAM 2+d 2+d 3+d+2p
SARAM 2+d, 3+dT 2+d 3+d+2p
External 2+d 2+d 6+2d+2p
MMR® DARAM 2 2,3t 2+2p
SARAM 2,3f 2 2+2p
External 2 2 5+d+2p

T Operand and code in same memory block
¥ Two operands and code in same memory block
O Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-35

Class 17A

Class 17A 1 word, 1 cycle. Single data-memory (Smem) write operand or MMR write operand,
and a stack-memory read operand.

Mnemonics POPD POPM
Cycles Cycles for a Single Execution
Operand Program
Smem Stack ROM/SARAM DARAM External
DARAM DARAM 1 1,2t 1+p
SARAM 1, 2t 1 1+p
DROM 1,2t 1 1+p
External 1+d 1+d 2+d+p
MMR? 1 1,2t 1+p
SARAM DARAM 1,2t 1,2t 1+p
SARAM 1,2t 3% 1 1+p
DROM 1,2t 1 1+p
External 1+d, 2+dt 1+d 2+d+p
MMR® 1,2t 1 1+p
External DARAM 1 1,2t 4+d+p
SARAM 1,2t 1 4+d+p
DROM 1,2t 1 4+d+p
External 1+d 1+d 5+2d+p
MMR? 1 1 4+d+p

t Operand and code in same memory block
* Two operands and code in same memory block
© Add one cycle for peripheral memory-mapped access.

3-36

Cycles for a Repeat Execution

Class 17A

Operand Program
Smem Stack ROM/SARAM DARAM External
DARAM DARAM n n, n+1t n+p
SARAM n, n+1t n n+p
DROM n, n+1t n, n+1t n+p
External n+nd n+nd n+1+nd+p
MMR?® n n, 2nt n+p
SARAM DARAM n, n+1t n, n+1t n+p
SARAM n, n+1t, 2n n, 2n n+p, 2n+p
2n+1%#
DROM n, n+1t n n+p
External n+nd, n+1+nd? n+nd n+1+nd+p
MMR? n, n+1t n n+p
External DARAM 2n-1+(n-1)d 2n—-1+(n-1)d, 2n+2+nd+p
2n+(n-1)dt
SARAM 2n-1+(n-1)d, 2n-1+(n-1)d, 2n+2+nd+p
2n+(n-1)dt 2n+(n-1)dt
DROM 2n-1+(n-1)d, 2n-1+(n-1)d 2n+2+nd+p
2n+(n-1)dt
External 4n-3+((2n-1)d 4n-3+(2n-1)d 4n+1+2nd+p
MMR® 2n-1+(n-1)d 2n-1+(n-1)d 2n+2+nd+p

T Operand and code in same memory block
¥ Two operands and code in same memory block
O Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-37

Class 17B

Class 17B 2 words, 2 cycles. Single data-memory (Smem) write operand using long-offset indi-
rect addressing, and a stack-memory read operand.

Mnemonics POPD
Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Smem Stack ROM/SARAM DARAM External
DARAM DARAM 2 2,3t 2+2p
SARAM 2,3T 2 2+2p
DROM 2,3T 2 2+2p
External 2+d 2+d 3+d+2p
MMR® 2 2,3t 2+2p
SARAM DARAM 2,3f 2,3f 2+2p
SARAM 2,3t 4t 2 2+2p
DROM 2, 3T 2 2+2p
External 2+d, 3+dt 2+d 3+d+2p
MMR® 2,3t 2 2+2p
External DARAM 2 2,3t 5+d+2p
SARAM 2,3t 2 5+d+2p
DROM 2,3 2 5+d+2p
External 2+d 2+d 6+2d+2p
MMR® 2 2 5+d+2p

t Operand and code in same memory block
* Two operands and code in same memory block
© Add one cycle for peripheral memory-mapped access.

3-38

Class 18A/ Class 18B

Class 18A 2 words, 2 cycles. Single data-memory (Smem) read and write operand.

Mnemonics ADDM ANDM ORM XORM
Cycles Cycles for a Single Execution
Operand Program
Smem ROM/SARAM DARAM External
DARAM 2 2,31 2+2p
SARAM 2,4t 2 2+2p
External 2+d 2+d 6+2d+2p
MMR? 2 2 242p

T Operand and code in same memory block
0 Add one cycle for peripheral memory-mapped access.

Class 18B 3 words, 3 cycles. Single data-memory (Smem) read and write operand using long-
offset indirect addressing.

Mnemonics ADDM ANDM ORM XORM

Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Smem ROM/SARAM DARAM External
DARAM 3 3,471 3+3p
SARAM 3,57 3 3+3p
External 3+d 3+d 7+2d+3p
MMR? 3 3 3+3p

T Operand and code in same memory block
O Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-39

Class 19A

Class 19A 2words, 2 cycles. Single data-memory (Smem) read operand or MMR read operand,
and single data-memory (dmad) write operand; or single data-memory (dmad) read
operand, and single data-memory (Smem) write operand or MMR write operand.

Mnemonics MVDK MVDM MVKD MVMD
Cycles Cycles for a Single Execution
Operand Program
Smem dmad ROM/SARAM DARAM External
DARAM DARAM 2 2,3t 2+2p
SARAM 2,3t 2, 3T 2+2p
External 2 2,3t 5+d+2p
MMR® 2 2 2+2p
SARAM DARAM 2,3t 2 2+2p
SARAM 2,31, 4% 2 2+2p
External 2,31 2 5+d+2p
MMR® 2,3t 2 2+2p
DROM DARAM 2, 3% 2 2+2p
SARAM 2,3t 2 2+2p
External 2,3t 2 5+d+2p
MMR? 2,31 2 2+2p
External DARAM 2+d 2+d 3+d+2p
SARAM 2+d, 3+dt 2+d 3+d+2p
External 2+d 2+d 6+2d+p
MMR® 2+d 2+d 3+d+2p
MMR® DARAM 2 2,3t 2+2p
SARAM 2,3t 2 2+2p
External 2 2 5+d+2p
MMR? 2 2 2+2p

t Operand and code in same memory block
* Two operands and code in same memory block
© Add one cycle for peripheral memory-mapped access.

3-40

Cycles for a Repeat Execution

Class 19A

Operand Program
Smem dmad ROM/SARAM DARAM External
DARAM DARAM n+1 n+1, n+2t n+1+2p
SARAM n+1, n+21 n+1, n+21 n+1+2p
External 2n+(n-1)d 2n+(n-1)d, 2n+3+nd+2p
2n+1+(n-1)dt
MMR? n+1 n+1 n+1+2p
SARAM DARAM n+1, n+21 n+1 n+1+2p
SARAM 2n, 2n+1t, 2n 2n+2p
2n+2%
External 2n+(n-1)d, 2n+(n-1)d 2n+3+nd+2p
2n+1+(n-1)dt
MMR? n+1, n+21 n+1 n+1+2p
DROM DARAM n+1, n+2t n+1 n+1+2p
SARAM n+1, n+21 n+1 n+1+2p
External 2n+(n-1)d, 2n+(n-1)d 2n+3+nd+2p
2n+1+(n-1)df
MMR® n+1, n+2t n+1 n+1+2p
External DARAM n+1+nd n+1+nd n+1+nd+2p
SARAM n+1+nd, n+1+nd n+1+nd+2p
n+2ndt
External 4n-2+(2n-1)d 4n-2+(2n-1)d 4n+2+2nd+2p
MMR® n+1+nd n+1+nd n+1+nd+2p
MMR? DARAM n+1 n+1 n+1+2p
SARAM n+1, n+21 n+1 n+1+2p
External 2n+(n-1)d 2n+(n-1)d 2n+3+nd+2p
MMR? n+1 n+1 n+1+2p

T Operand and code in same memory block
¥ Two operands and code in same memory block
O Add n cycles for peripheral memory-mapped access.

Instruction Classes and Cycles 3-41

Class 19B

Class 19B 2 words, 2 cycles. Single data-memory (Smem) read operand using long-offset in-
direct addressing and single data-memory (dmad) write operand, or single data-
memory (dmad) read operand and single data-memory (Smem) write operand using

long-offset indirect addressing.

Mnemonics MVDK
Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program

Smem dmad ROM/SARAM DARAM External

DARAM DARAM 3 3, 4t 3+3p
SARAM 3,4t 3,4t 3+3p
External 3 3,4t 6+d+3p
MMR? 3 3 3+3p

SARAM DARAM 3,4t 3 3+3p
SARAM 3, 4T, 5% 3 3+3p
External 3, 4t 3 6+d+3p
MMR? 3, 4t 3 3+3p

DROM DARAM 3, 4% 3 3+3p
SARAM 3, 4t 3 3+3p
External 3, 4t 3 6+d+3p
MMR? 3, 4t 3 3+3p

External DARAM 3+d 3+d 4+d+3p
SARAM 3+d, 4+dt 3+d 4+d+3p
External 3+d 3+d 7+2d+2p
MMR? 3+d 3+d 4+d+3p

t Operand and code in same memory block

* Two operands and code in same memory block

© Add one cycle for peripheral memory-mapped access.

3-42

Class 19B

Cycles for a Single Execution With Long-Offset Modifier (Continued)

Operand Program
Smem dmad ROM/SARAM DARAM External
MMR? DARAM 3 3, 41 3+3p
SARAM 3,4t 3 3+3p
External 3 3 6+d+3p
MMR? 3 3 3+3p

T Operand and code in same memory block

¥ Two operands and code in same memory block
O Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-43

Class 20A

Class 20A 2 words, 4 cycles. Single data-memory (Smem) read operand and single program-
memory (pmad) write operand.

Mnemonics MVDP
Cycles Cycles for a Single Execution
Operand Program
Smem pmad ROM/SARAM DARAM External
DARAM DARAM 4 4 4+2p
SARAM 4 4 4+2p
External 4 4 6+pd+2p
SARAM DARAM 4,51 4 4+2p
SARAM 4 4 4+2p
External 4 4 6+pd+2p
DROM DARAM 4,5t 4 4+2p
SARAM 4 4 4+2p
External 4 4 6+pd+2p
External DARAM 4+d 4+d 4+d+2p
SARAM 4+d 4+d 4+d+2p
External 4+d+pd 4+d+pd 6+d+pd+2p
MMR? DARAM 4 4 4+2p
SARAM 4 4 4+2p
External 4 4 6+pd+2p

t Operand and code in same memory block
© Add one cycle for peripheral memory-mapped access.

3-44

Cycles for a Repeat Execution

Class 20A

Operand Program
Smem pmad ROM/SARAM DARAM External
DARAM DARAM n+3 n+3 n+3+2p
SARAM n+3 n+3 n+3+2p
External 2n+2+(n-1)pd 2n+2+(n-1)pd 2n+4+npd+2p
SARAM DARAM n+3 n+3 n+3+2p
SARAM n+3, 2n+2# n+3, 2n+2# n+3+2p,
2n+2+2p#
External 2n+2+(n—1)pd 2n+2+(n-1)pd 2n+4+npd+2p
DROM DARAM n+3 n+3 n+3+2p
SARAM n+3 n+3 n+3+2p
External 2n+2+(n-1)pd 2n+2+(n-1)pd 2n+4+npd+2p
External DARAM n+3+npd n+3+npd n+3+npd+2p
SARAM n+3+npd n+3+npd n+3+npd+2p
External 4n+nd+npd 4n+nd+npd 4n+2+nd+npd+2p
MMR? DARAM n+3 n+3 n+3+2p
SARAM n+3 n+3 n+3+2p
External 2n+2+(n—1)pd 2n+2+(n-1)pd 2n+4+npd+2p

Two operands in same memory block
O Add n cycles for peripheral memory-mapped access.

Instruction Classes and Cycles

3-45

Class 20B

Class 20B 3 words, 5 cycles. Single data-memory (Smem) read operand using long-offset in-
direct addressing and single program-memory (pmad) write operand.

Mnemonics MVDP
Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Smem pmad ROM/SARAM DARAM External
DARAM DARAM 5 5 5+3p
SARAM 5 5 5+3p
External 5 5 7+2pd+3p
SARAM DARAM 5,61 5 5+3p
SARAM 5 5 5+3p
External 5 5 7+2pd+3p
DROM DARAM 5,67 5 5+3p
SARAM 5 5 5+3p
External 5 5 7+2pd+3p
External DARAM 5+d 5+d 5+d+3p
SARAM 5+d 5+d 5+d+3p
External 5+d+2pd 5+d+2pd 7+d+2pd+3p
MMR? DARAM 5 5 5+3p
SARAM 5 5 5+3p
External 5 5 7+3pd+3p

t Operand and code in same memory block
© Add one cycle for peripheral memory-mapped access.

3-46

Class 21A

Class 21A 2 words, 3 cycles. Single program-memory (pmad) read operand and single data-
memory (Smem) write operand.

Mnemonics MVPD
Cycles Cycles for a Single Execution
Operand Program

pmad Smem ROM/SARAM DARAM External

DARAM DARAM 3 3 3+2p
SARAM 3 3 3+2p
External 3 3 6+d+2p
MMR? 3 3 3+2p

SARAM DARAM 3 3 3+2p
SARAM 3 3 3+2p
External 3 3 6+d+2p
MMR? 3 3 3+2p

PROM DARAM 3 3 3+2p
SARAM 3 3 3+2p
External 3 3 6+d+2p
MMR? 3 3 3+2p

External DARAM 3+pd 3+pd 3+pd+2p
SARAM 3+pd 3+pd 3+pd+2p
External 3+pd 3+pd 6+d+pd+2p
MMR? 3+pd 3+pd 3+pd+2p

O Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-47

Class 21A

3-48

Cycles for a Repeat Execution

Operand Program
pmad Smem ROM/SARAM DARAM External
DARAM DARAM n+2 n+2 n+2+2p
SARAM n+2 n+2 n+2+2p
External 2n+1+(n-1)d 2n+1+(n-1)d 2n+4+nd+2p
MMR? n+2 n+2 n+2+2p
SARAM DARAM n+2 n+2 n+2+2p
SARAM n+2, 2n+1# n+2, 2n+1# n+2+2p
External 2n+1+(n-1)d 2n+1+(n-1)d 2n+4+nd+2p
MMR® n+2 n+2 n+2+2p
PROM DARAM n+2 n+2 n+2+2p
SARAM n+2 n+2 n+2+2p
External 2n+1+(n-1)d 2n+1+(n-1)d 2n+4+nd+2p
MMR? n+2 n+2 n+2+2p
External DARAM n+2+npd n+2+npd n+2+npd+2p
SARAM n+2+npd n+2+npd n+2+npd+2p
External 4n-1+(n-1)d 4n-1+(n-1)d 4n+2+nd+npd+2p
+npd +npd
MMR? n+2+npd n+2+npd n+2+npd+2p

#Two operands in same memory block
O Add n cycles for peripheral memory-mapped access.

Class 21B

Class 21B 3 words, 4 cycles. Single program-memory (pmad) read operand and single data-
memory (Smem) write operand using long-offset indirect addressing.
Mnemonics MVPD
Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program
pmad Smem ROM/SARAM DARAM External
DARAM DARAM 4 4 4+3p
SARAM 4 4 4+3p
External 4 4 7+d+3p
MMR® 4 4 4+3p
SARAM DARAM 4 4 4+3p
SARAM 4 4 4+3p
External 4 4 7+d+3p
MMR? 4 4 4+3p
PROM DARAM 4 4 4+3p
SARAM 4 4 4+3p
External 4 4 7+d+3p
MMR? 4 4 4+3p
External DARAM 4+2pd 4+2pd 4+2pd+3p
SARAM 4+2pd 4+2pd 4+2pd+3p
External 4+2pd 4+2pd 7+d+2pd+3p
MMR? 4+2pd 4+2pd 4+2pd+3p

O Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-49

Class 22A

Class 22A 2 words, 3 cycles. Single data-memory (Smem) read operand and single program-
memory (pmad) read operand.

Mnemonics MACP
Cycles Cycles for a Single Execution
Operand Program

pmad Smem ROM/SARAM DARAM External

DARAM DARAM 3 3,4t 3+2p
SARAM 3,4t 3 3+2p
External 3+d 3+d 4+d+2p
MMR? 3 3 3+2p

SARAM DARAM 3 3, 4t 3+2p
SARAM 3, 471 3 3+2p
External 3+d 3+d 4+d+2p
MMR? 3 3 3+2p

PROM DARAM 3 3,41 3+2p
SARAM 3,4t 3 3+2p
External 3+d 3+d 4+d+2p
MMR® 3 3 3+2p

External DARAM 3+pd 3+pd, 4+pdt 3+pd+2p
SARAM 3+pd 3+pd 4+pd+2p
External 4+d+pd 4+d+pd 4+d+pd+2p
MMR? 3+pd 3+pd 3+pd+2p

T Operand and code in same memory block
O Add one cycle for peripheral memory-mapped access.

3-50

Cycles for a Repeat Execution

Class 22A

Operand Program
pmad Smem ROM/SARAM DARAM External
DARAM DARAM n+2 n+2, n+3t n+2+2p
SARAM n+2, n+3% n+2 n+2+2p
External n+2+nd n+2+nd n+2+nd+2p
MMR? n+2 n+2 n+2+2p
SARAM DARAM n+2 n+2, n+31 n+2+2p
SARAM n+2, n+3T, n+2, 2n+2# n+2+2p,
2n+2# 2n+2+2p#
External n+2+nd n+2+nd n+2+nd+2p
MMR® n+2 n+2 n+2+2p
PROM DARAM n+2 n+2, n+3t n+2+2p
SARAM n+2, n+31 n+2 n+2+2p
External n+2+nd n+2+nd n+2+nd+2p
MMR? n+2 n+2 n+2+2p
External DARAM n+2+npd n+2+npd, n+2+npd+2p
n+3+npd’
SARAM n+2+npd n+2+npd n+3+npd+2p
External 2n+2+nd+npd 2n+2+nd+npd 2n+2+nd+npd
+2p
MMR? n+2+npd n+2+npd n+2+npd+2p

T Operand and code in same memory block
#Two operands in same memory block

O Add n cycles for peripheral memory-mapped access.

Instruction Classes and Cycles 3-51

Class 22B

Class 22B 3 words, 4 cycles. Single data-memory (Smem) read operand using long-offset in-
direct addressing and single program-memory (pmad) read operand.

Mnemonics MACP
Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program

pmad Smem ROM/SARAM DARAM External

DARAM DARAM 4 4, 5% 4+3p
SARAM 4,5t 4 4+3p
External 4+d 4+d 5+d+3p
MMR? 4 4 4+3p

SARAM DARAM 4 4,5t 4+3p
SARAM 4,571 4 4+3p
External 4+d 4+d 5+d+3p
MMR? 4 4 4+3p

PROM DARAM 4 4,5t 4+3p
SARAM 4,5t 4 4+3p
External 4+d 4+d 5+d+3p
MMR® 4 4 4+3p

External DARAM 4+2pd 4+2pd, 5+2pdT 4+2pd+3p
SARAM 4+2pd 4+2pd 5+2pd+3p
External 5+d+2pd 5+d+2pd 5+d+2pd+3p
MMR? 4+2pd 4+2pd 4+2pd+3p

T Operand and code in same memory block
O Add one cycle for peripheral memory-mapped access.

3-52

Class 23A

Class 23A 2 words, 3 cycles. Single data-memory (Smem) read operand, single data-memory
(Smem) write operand, and single program-memory (pmad) read operand.

Mnemonics MACD
Cycles Cycles for a Single Execution
Operand Program

pmad Smem ROM/SARAM DARAM External

DARAM DARAM 3, 4% 3, 4% 3+2p, 4+2p#
SARAM 3, 471 3, 47 3+2p
External 3+d 3+d 6+2d+2p
MMR® 3 3 3+2p

SARAM DARAM 3, 47 3 3+2p
SARAM 3, 4# 3, 4# 3+2p, 4+2p#
External 3+d 3+d 6+2d+2p
MMR? 3 3 3+2p

PROM DARAM 3 3 3+2p
SARAM 3,4t 3 3+2p
External 3+d 3+d 6+2d+2p
MMR? 3 3 3+2p

External DARAM 3+pd 3+pd 3+pd+2p
SARAM 3+pd 3+pd 3+pd+2p
External 4+d+pd 4+d+pd 7+d+pd+2p
MMR? 3+pd 3+pd 4+pd+2p

T Operand and code in same memory block
#Two operands in same memory block
0 Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-53

Class 23A

Cycles for a Repeat Execution

Operand Program
pmad Smem ROM/SARAM DARAM External
DARAM DARAM n+2, 2n+2# n+2, 2n+2# n+2+2p,
2n+2+2p#
SARAM n+2, n+3t n+2, n+3T n+2+2p
External 4n+1+2nd 4n+1+2nd 4n+2+2nd+2p
MMR? n+2 n+2 n+2+2p
SARAM DARAM n+2, n+37 n+2 n+2+2p
SARAM n+2, 2n+2# n+2, 2n+2# n+2+2p,
2n+2+2p#
External 4n+1+2nd 4n+1+2nd 4n+2+2nd+2p
MMR® n+2 n+2 n+2+2p
PROM DARAM n+2 n+2 n+2+2p
SARAM n+2, n+3t n+2 n+2+2p
External 4n+1+2nd 4n+1+2nd 4n+2+2nd+2p
MMR® n+2 n+2 n+2+2p
External DARAM n+2+npd n+2+npd, n+2+npd+2p
n+3+npdt
SARAM n+2+npd n+2+npd n+2+npd+2p
External 5n-1+nd+npd 5n-1+nd+npd 5n+2+nd+npd
+2p
MMR? n+2+npd n+2+npd 4n+3+npd+2p

t Operand and code in same memory block
#Two operands in same memory block
O Add one cycle for peripheral memory-mapped access.

3-54

Class 23B

Mnemonics

Cycles

Class 23B

3 words, 4 cycles. Single data-memory (Smem) read operand using long-offset
indirect addressing, single data-memory (Smem) write operand using long-offset
indirect addressing, and single program-memory (pmad) read operand.

MACD
Cycles for a Single Execution With Long-Offset Modifier
Operand Program

pmad Smem ROM/SARAM DARAM External

DARAM DARAM 4, 5% 4, 5% 4+3p, 5+3p#
SARAM 4, 5t 4,5t 4+3p
External 4+d 4+d 7+2d+3p
MMR? 4 4 4+3p

SARAM DARAM 4,5t 4 4+3p
SARAM 4, 5% 4, 5% 4+3p, 5+3p#
External 4+d 4+d 7+2d+3p
MMR? 4 4 4+3p

PROM DARAM 4 4 4+3p
SARAM 4,5t 4 4+3p
External 4+d 4+d 7+2d+3p
MMR? 4 4 4+3p

External DARAM 4+2pd 4+2pd 4+pd+3p
SARAM 4+2pd 4+2pd 4+2pd+3p
External 5+d+2pd 5+d+2pd 8+d+2pd+3p
MMR? 4+2pd 4+2pd 5+2pd+3p

T Operand and code in same memory block
Two operands in same memory block
0 Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-55

Class 24A / Class 24B

Class 24A

Mnemonics

Cycles

Class 24B

Mnemonics

Cycles

3-56

1 word, 1 cycle. Single data-memory (Smem) read operand and single data-memory

(Smem) write operand.

DELAY LTD

Cycles for a Single Execution

Operand Program
Smem ROM/SARAM DARAM External
DARAM 1 1,2t 1+p
SARAM 1,3t 1 1+p
External 1+d 1+d 5+p+2d
T Operand and code in same memory block

Cycles for a Repeat Execution
Operand Program
Smem ROM/SARAM DARAM External
DARAM n n, n+1t n+p
SARAM 2n-1, 2n+1t 2n-1 2n-1+p
External 4n-3+(2n-1)d 4n-3+(2n-1)d 4n+1+p+2nd

T Operand and code in same memory block

2 words, 2 cycles. Single data-memory (Smem) read operand using long-offset indi-
rect addressing and single data-memory (Smem) write operand using long-offset in-

direct addressing.

DELAY LTD

Cycles for a Single Execution With Long-Offset Modifier

Operand Program

Smem ROM/SARAM DARAM External
DARAM 2 2, 3" 2+2p
SARAM 2,4t 2 2+2p
External 2+d 2+d 6+2p+2d

t Operand and code in same memory block

Class 25A

Class 25A 1 word, 5 cycles. Single program-memory (pmad) read address and single data-
memory (Smem) write operand.

Mnemonics READA
Cycles Cycles for a Single Execution
Operand Program

pmad Smem ROM/SARAM DARAM External

DARAM DARAM 5 5 5+p
SARAM 5 5 5+p
External 5 5 8+d+p
MMR? 5 5 5+p

SARAM DARAM 5 5 5+p
SARAM 5 5 5+p
External 5 5 8+d+p
MMR? 5 5 5+p

PROM DARAM 5 5 5+p
SARAM 5 5 5+p
External 5 5 8+d+p
MMR® 5 5 5+p

External DARAM 5+pd 5+pd 5+pd+p
SARAM 5+pd 5+pd 5+pd+p
External 5+pd 5+pd 8+pd+d+p
MMR? 5+pd 5+pd 5+pd+p

O Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-57

Class 25A

3-58

Cycles for a Repeat Execution

Operand Program
pmad Smem ROM/SARAM DARAM External
DARAM DARAM n+4 n+4 n+4+p
SARAM n+4 n+4 n+4+p
External 2n+3+(n-1)d 2n+3+(n-1)d 2n+6+nd+np
MMR® n+4 n+4 n+4+p
SARAM DARAM n+4 n+4 n+4+p
SARAM n+4, 2n+3# n+4, 2n+3# n+4+p,
2n+3+p#
External 2n+3+(n-1)d 2n+3+(n-1)d 2n+6+nd+p
MMR® n+4 n+4 n+4+p
PROM DARAM n+4 n+4 n+4+p
SARAM n+4 n+4 n+4+p
External 2n+3+(n-1)d 2n+3+(n-1)d 2n+6+nd+p
MMR® n+4 n+4 n+4+p
External DARAM n+4+npd n+4+npd n+4+npd+p
SARAM n+4+npd n+4+npd n+4+npd+p
External 4n+1+(n-1)d 4n+1+(n-1)d 4n+4+nd+npd
+npd +npd +p
MMR? n+4+npd n+4+npd n+4+npd+p

#Two operands in same memory block

0 Add n cycles for peripheral memory-mapped access.

Class 25B

Class 25B 2 words, 6 cycles. Single program-memory (pmad) read address and single data-
memory (Smem) write operand using long-offset indirect addressing.

Mnemonics READA
Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program

pmad Smem ROM/SARAM DARAM External

DARAM DARAM 6 6 6+2p
SARAM 6 6 6+2p
External 6 6 9+d+2p
MMR® 6 6 6+2p

SARAM DARAM 6 6 6+2p
SARAM 6 6 6+2p
External 6 6 9+d+2p
MMR? 6 6 6+2p

PROM DARAM 6 6 6+2p
SARAM 6 6 6+2p
External 6 6 9+d+2p
MMR® 6 6 6+2p

External DARAM 6+2pd 6+2pd 6+2pd+2p
SARAM 6+2pd 6+2pd 6+2pd+2p
External 6+2pd 6+2pd 9+2pd+d+2p
MMR? 6+2pd 6+2pd 6+2pd+2p

O Add one cycle for peripheral memory-mapped access.

Instruction Classes and Cycles 3-59

Class 26A

Class 26A 1 word, 5 cycles. Single data-memory (Smem) read operand and single program-
memory (pmad) write address.

Mnemonics WRITA
Cycles Cycles for a Single Execution
Operand Program
Smem pmad ROM/SARAM DARAM External
DARAM DARAM 5 5 5+p
SARAM 5 5 5+p
External 5 5 5+pd+p
SARAM DARAM 5 5 5+p
SARAM 5 5 5+p
External 5 5 5+pd+p
DROM DARAM 5 5 5+p
SARAM 5 5 5+p
External 5 5 5+pd+p
External DARAM 5+pd 5+pd 5+pd+p
SARAM 5+pd 5+pd 5+pd+p
External 5+d 5+d 7+d+pd+p
MMR® DARAM 5 5 5+p
SARAM 5 5 5+p
External 5 5 5+pd+p

© Add one cycle for peripheral memory-mapped access.

3-60

Cycles for a Repeat Execution

Class 26A

Operand Program

Smem pmad ROM/SARAM DARAM External

DARAM DARAM n+4 n+4 n+4+p
SARAM n+4 n+4 n+4+p
External 2n+3+(n-1)pd 2n+3+(n-1)pd 2n+3+npd+p

SARAM DARAM n+4 n+4 n+4+p
SARAM n+4, 2n+3# n+4, 2n+3# n+4+p,

2n+3+p#

External 2n+3+(n—1)pd 2n+3+(n-1)pd 2n+3+npd+p

DROM DARAM n+4 n+4 n+4+p
SARAM n+4 n+4 n+4+p
External 2n+3+(n-1)pd 2n+3+(n-1)pd 2n+3+npd+p

External DARAM n+4+npd n+4+npd n+4+npd+p
SARAM n+4+npd n+4+npd n+4+npd+p
External 4n+1+nd 4n+1+nd 4n+3+nd+npd

+(n-1)pd +(n-1)pd +p

MMR? DARAM n+4 n+4 n+4+p
SARAM n+4 n+4 n+4+p
External 2n+3+(n-1)pd 2n+3+(n-1)pd 2n+3+npd+p

#Two operands in same memory block

O Add n cycles for peripheral memory-mapped access.

Instruction Classes and Cycles 3-61

Class 26B

Class 26B 2 words, 6 cycles. Single data-memory (Smem) read operand using long-offset indi-
rect addressing and single program-memory (pmad) write address.

Mnemonics WRITA
Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Smem pmad ROM/SARAM DARAM External
DARAM DARAM 6 6 6+2p
SARAM 6 6 6+2p
External 6 6 6+2pd+2p
SARAM DARAM 6 6 6+2p
SARAM 6 6 6+2p
External 6 6 6+2pd+2p
DROM DARAM 6 6 6+2p
SARAM 6 6 6+2p
External 6 6 6+2pd+2p
External DARAM 6+2pd 6+2pd 6+2pd+2p
SARAM 6+2pd 6+2pd 6+2pd+2p
External 6+d 6+d 8+d+2pd+2p
MMR® DARAM 6 6 6+2p
SARAM 6 6 6+2p
External 6 6 6+2pd+2p

© Add one cycle for peripheral memory-mapped access.

3-62

Class 27A

Mnemonics

Cycles

Class 27B

Mnemonics

Cycles

Class 27A/ Class 27B

2 words, 2 cycles. Single 1/0 port read operand and single data-memory (Smem)

write operand.

PORTR
Cycles for a Single Execution
Operand Program
Port Smem ROM/SARAM DARAM External
External DARAM 3+io 3+io 6+2p+io
SARAM 3+io, 4+iot 3+io 6+2p+io
External 3+io 3+io 9+2p+d+io
T Operand and code in same memory block
Cycles for a Repeat Execution
Operand Program
Port Smem ROM/SARAM DARAM External
External DARAM 2n+1+nio 2n+1+nio 2n+4+2p+nio
SARAM 2n+1+nio, 2n+1+nio 2n+4+2p+nio
2n+2+niof
External 5n—-2+nio 5n—-2+nio 5n+4+2p
+(n-1)d +(n-1)d +nio+nd

T Operand and code in same memory block

3 words, 3 cycles. Single 1/O port read operand and single data-memory (Smem)

write operand using long-offset indirect addressing.

PORTR
Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Port Smem ROM/SARAM DARAM External
External DARAM 4+io 4+io 7+3p+io
SARAM 4+i0, 5+ioT 4+io 7+3p+io
External 4+io 4+io 10+3p+d+io

t Operand and code in same memory block

Instruction Classes and Cycles 3-63

Class 28A

Class 28A 2 words, 2 cycles. Single data-memory (Smem) read operand and single /O port
write operand.
Mnemonics PORTW
Cycles Cycles for a Single Execution
Operand Program
Port Smem ROM/SARAM DARAM External
External ~ DARAM 2 2,3t 6+2p+io
SARAM 2,3T 2 6+2p+io
DROM 2,3T 2 6+2p+io
External 2+d 2+d 7+2p+d+io
t Operand and code in same memory block
Cycles for a Repeat Execution
Operand Program
Port Smem ROM/SARAM DARAM External
External DARAM 2n+(n-1)io 2n+(n-1)io, 2n+4+2p+nio
2n+1+(n-1)iot
SARAM 2n+(n-1)io, 2n+(n-1)io 2n+4+2p+nio
2n+1+(n—1)ioT
DROM 2n+(n-1)io, 2n+(n-1)io 2n+4+2p+nio
2n+1+(n-1)iof
External 5n-3+nd 5n-3+nd 5n+2+2p+nd
+(n-1)io +(n-1)io +nio

3-64

t Operand and code in same memory block

Class 28B

Class 28B 3 words, 3 cycles. Single data-memory (Smem) read operand using long-offset indi-
rect addressing and single 1/O port write operand.

Mnemonics PORTW
Cycles Cycles for a Single Execution With Long-Offset Modifier
Operand Program
Port Smem ROM/SARAM DARAM External
External DARAM 3 3,4t 7+3p+io
SARAM 3, 471 3 7+3p+io
DROM 3, 47 3 7+3p+io
External 3+d 3+d 8+3p+d+io

t Operand and code in same memory block

Instruction Classes and Cycles 3-65

Class 29A/ Class 29B

Class 29A 2 words, 4 cycles, 2 cycles (delayed), 2 cycles (false condition). Single program-
memory (pmad) operand.

Mnemonics B[D] BANZ[D] FB[D] RPTB[D]
Cycles Cycles for a Single Execution
Program
ROM/SARAM DARAM External
4 4 4+4p

Cycles for a Single Delayed Execution

Program

ROM/SARAM DARAM External

2 2 2+2p

Class 29B 2 words, 4 cycles, 2 cycles (delayed). Single program-memory (pmad) operand.

Mnemonics CALL[D] FCALL[D]

Cycles Cycles for a Single Execution
Operand Program
Stack ROM/SARAM DARAM External
DARAM 4 4 4+4p
SARAM 4,57 4 4+4p
External 4 4 7+4p+d

t Operand and code in same memory block

Cycles for a Single Delayed Execution

Operand Program

Stack ROM/SARAM DARAM External
DARAM 2 2 2+2p
SARAM 2,3t 2 2+2p
External 2 2 5+2p+d

t Operand and code in same memory block

3-66

Class 30A

Mnemonics

Cycles

Class 30B

Mnemonics

Cycles

Class 30A/ Class 30B

1 word, 6 cycles, 4 cycles (delayed). Single register operand.

BACCID] FBACCID]

Cycles for a Single Execution

Program

ROM/SARAM DARAM External

6 6 6+3p

Cycles for a Single Delayed Execution

Program

ROM/SARAM DARAM External

4 4 4+p

1 word, 6 cycles, 4 cycles (delayed). Single register operand.

CALA[D] FCALA[D]

Cycles for a Single Execution

Program
Stack ROM/SARAM DARAM External
DARAM 6 6 6+3p
SARAM 6 6 6+3p
External 6 6 7+3p+d

Cycles for a Single Delayed Execution

Program
Stack ROM/SARAM DARAM External
DARAM 4 4 4+p
SARAM 4 4 4+p
External 4 4 5+p+d

Instruction Classes and Cycles 3-67

Class 31A

Class 31A 2 words, 5 cycles, 3 cycles (delayed). Single program-memory (pmad) operand and
short-immediate operands.

Mnemonics BC[D]
Cycles Cycles for a Single Execution
Program
Condition ROM/SARAM DARAM External
True 5 5 5+4p
False 3 3 3+2p
Cycles for a Single Delayed Execution
Program
Condition ROM/SARAM DARAM External
True 3 3 3+2p
False 3 3 3+2p

3-68

Class 31B

Class 31B 2 words, 5 cycles, 3 cycles (delayed), 3 cycles (false condition). Single program-
memory (pmad) operand and short-immediate operands.

Mnemonics CC[D]

Cycles Cycles for a Single True Condition Execution
Operand Program
Stack ROM/SARAM DARAM External
DARAM 5 5 5+4p
SARAM 5,6t 5 5+4p
External 5 5 8+4p+d

T Operand and code in same memory block

Cycles for a Single False Condition Execution

Operand Program

Stack ROM/SARAM DARAM External
DARAM 3 3 3+2p
SARAM 3,4t 3 3+2p
External 3 3 6+2p+d

T Operand and code in same memory block

Cycles for a Single Delayed Execution

Operand Program

Stack ROM/SARAM DARAM External
DARAM 3 3 3+2p
SARAM 3, 4t 3 3+2p
External 3 3 6+2p+d

T Operand and code in same memory block

Instruction Classes and Cycles 3-69

Class 32

Class 32 1 word, 5 cycles, 3 cycles (delayed), 3 cycles (false condition). No operand, or short-
immediate operands.

Mnemonics RC[D] RET[D] RETE[D]
Cycles Cycles for a Single Execution
Operand Program
Stack ROM/SARAM DARAM External
DARAM 5 5,67 5+3p
SARAM 5, 61 5 5+3p
External 5+d 5+d 6+d+3p

T Operand and code in same memory block

Cycles for a Single Delayed Execution

Operand Program

Stack ROM/SARAM DARAM External
DARAM 3 3,47 3+p
SARAM 3,47 3 3+p
External 3+d 3+d 4+d+p

t Operand and code in same memory block

3-70

Class 33

Mnemonics

Cycles

Class 34

Mnemonics

Cycles

Class 33/ Class 34

1 word, 3 cycles, 1 cycle (delayed). No operand.

RETF[D]
Cycles for a Single Execution

Program
ROM/SARAM DARAM External
3 3 3+p

Cycles for a Single Delayed Execution

Program
ROM/SARAM DARAM External
1 1 1+p

1 word,

6 cycles, 4 cycles (delayed). No operand.

FRET[D] FRETE[D]

Cycles for a Single Execution

Program
Stack ROM/SARAM DARAM External
DARAM 6 6, 8t 6+3p
SARAM 6, 8t 6 6+3p
External 6+2d 6+2d 8+3p+d

t Operand and code in same memory block

Cycles for a Single Delayed Execution

Program
Stack ROM/SARAM DARAM External
DARAM 4 4, 61 4+p
SARAM 4,6t 4 4+p
External 4+2d 4+2d 6+p+2d

T Operand and code in same memory block

Instruction Classes and Cycles 3-71

Class 35/ Class 36

Class 35 1 word, 3 cycles. No operand or single short-immediate operand.
Mnemonics INTR RESET TRAP
Cycles Cycles for a Single Execution
Program

ROM/SARAM DARAM External

3 3 3+p
Class 36 1 word, 4 cycles (minimum). Single short-immediate operand.
Mnemonics IDLE
Cycles The number of cycles needed to execute this instruction depends on the idle period.

3-72

Chapter 4

Assembly Language Instructions

This section provides detailed information on the instruction set for the '54x
family. The '54x instruction set supports numerically intensive signal-processing
operations as well as general-purpose applications, such as multiprocessing
and high-speed control.

See Section 1.1, Instruction Set Symbols and Abbreviations, for definitions of
symbols and abbreviations used in the description of assembly language
instructions. See Section 1.2, Example Description of Instruction, for a description
of the elements in an instruction. See Chapter 2 for a summary of the instruction
set.

4-1

ABDST Absolute Distance

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

ABDST Xmem, Ymem
Xmem, Ymem: Dual data-memory operands

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 0o o o 1 1|[x x x X Y Y Y Y

(B) + [(A(32-16))| — B
(Xmem) — (Ymem)) << 16 — A

Affected by OVM, FRCT, and SXM
Affects C, OVA, and OVB

This instruction calculates the absolute value of the distance between two vec-
tors, Xmemand Ymem. The absolute value of accumulator A(32-16) is added
to accumulator B. The content of Ymem is subtracted from Xmem, and the re-
sult is left-shifted 16 bits and stored in accumulator A. If the fractional mode
bit is logical 1 (FRCT = 1), the absolute value is multiplied by 2.

1 word
1 cycle
Class 7 (see page 3-12)

ABDST *AR3+, *AR4+

Before Instruction After Instruction
A [__FEABCD 0000 | A
B [__0000000000 | B
AR3 | 0100 AR3
AR4 | 0200] AR4
FRCT | 0] FRCT[0
Data Memory
0100h | 0055 | 0100h
0200h | 00AA] 0200h

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example 1

Example 2

Example 3

Absolute Value of Accumulator ABS

ABS src|, dst]

src, dst: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|11110 lSD|10000101

| (src)| — dst (or src if dst is not specified)

OVM affects this instruction as follows:

If OVM = 1, the absolute value of 80 0000 0000h is 00 7FFF FFFFh.
If OVM = 0, the absolute value of 80 0000 0000h is 80 0000 0000h.

Affects C and OVdst (or OVsrc, if dst = src)

This instruction calculates the absolute value of src and loads the value into
dst. If no dstis specified, the absolute value is loaded into src.

If the result of the operation is equal to 0, the carry bit, C, is set.
1 word
1 cycle

Class 1 (see page 3-3)

ABS A, B
Before Instruction After Instruction
A |__FFFFFFFFCB| -53 A -53
B | FFFFFF FC18]|-1000 B +53
ABS A
Before Instruction After Instruction
A [0312345678 | A
ow | 1] ovm
ABS A
Before Instruction After Instruction
A | 0312345678 | A
ovMm | ol owm[q

Assembly Language Instructions 4-3

ADD Add to Accumulator

Syntax

Operands

Opcode

ADD Smem, src

ADD Smem, TS, src

ADD Smem, 16, src|, dst]

ADD Smem |, SHIFT], src|, dst]
ADD Xmem, SHFT, src

ADD Xmem, Ymem, dst

ADD #lk[, SHFT], src|, dst]
ADD #lk, 16, src|, dst]

ADD src|, SHIFT], [, dst]

ADD src, ASM [, dst]

CoOoNOR~®NME

=
e

Smem: Single data-memory operand
Xmem, Ymem: Dual data-memory operands
src, dst: A (accumulator A)

B (accumulator B)
-32768 < |k = 32767
-16 < SHIFT =< 15
0 < SHFT = 15

1:

15 14 13 12 11 10 9 8 7 &
[o o o o o o o s|i1 A
2:

15 14 13 12 11 10 9 8 7 &
[o o o0 o o 1 o s|i A
3:

15 14 13 12 11 10 9 8 7 &
[o 0o 1 1 1 1 p| 1 A
4.

15 14 13 12 11 10 9 8 7 &

101 1 1] 1
0o o 1 1 s D|lo o
5:

15 14 13 12 11 10 9 8 7 &
[1 0o o 2 0o 0o o s X
6:

15 14 13 12 11 10 9 8 7 6
[1 0o 1 0o o0 o pD| x X
7.

15 14 13 12 11 10 9 8 7 6

1 1 1 1 0 0 s DJo

o

16-bit constant

Add to Accumulator ADD

8:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 1 1 o0 O s DfoO 1 1 0 0 0 0 O
16-bit constant

9:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 1 o 1 s blo o o s H I F T|
10:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 1 0o 1 s b[1 0 0 0 o0 0 |

Execution 1: (Smem) + (src) — src
2. (Smem) << (TS) + (src) — src
3: (Smem) << 16 + (src) — dst
4: (Smem) [<< SHIFT] + (src) — dst
5. (Xmem) << SHFT + (src) — src
6: ((Xmem) + (Ymem)) << 16 — dst
7: Ik << SHFT + (src)— dst
8: Ik << 16 + (src) — dst
9: (srcor [dst]) + (src) << SHIFT — dst
10: (src or [dst]) + (src) << ASM — dst
Status Bits Affected by SXM and OVM

Affects C and OVdst (or OVsrc, if dst = src)

For instruction syntax 3, if the result of the addition generates a carry, the carry
bit, C, is set to 1; otherwise, C is not affected.

Assembly Language Instructions 4-5

ADD Add to Accumulator

Description

Words

Cycles

4-6

This instruction adds a 16-bit value to the content of the selected accumulator
or to a 16-bit operand Xmem in dual data-memory operand addressing mode.
The 16-bit value added is one of the following:

[The content of a single data-memory operand (Smem)
[The content of a dual data-memory operand (Ymem)
[A 16-bitimmediate operand (#/k)

(1 The shifted value in src

If dstis specified, this instruction stores the result in dst. If no dstis specified,
this instruction stores the result in src. Most of the second operands can be
shifted. For a left shift:

[Low-order bits are cleared
[High-order bits are:

B Sign extended if SXM =1
B Clearedif SXM =0

For a right shift, the high-order bits are:

B Sign extended if SXM =1
B ClearedifSXM =0

Notes:
The following syntaxes are assembled as a different syntax in certain cases.

[Syntax 4: If dst = src and SHIFT = 0, then the instruction opcode is
assembled as syntax 1.

[0 Syntax 4:If dst=src, SHIFT < 15 and Smem indirect addressing mode
is included in Xmem, then the instruction opcode is assembled as
syntax 5.

[Syntax5: If SHIFT =0, the instruction opcode is assembled as syntax 1.

Syntaxes 1, 2, 3, 5, 6, 9, and 10: 1 word
Syntaxes 4, 7, and 8: 2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntaxes 1, 2, 3, 5, 6, 9, and 10: 1 cycle
Syntaxes 4, 7, and 8: 2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Classes

Example 1

Example 2

Example 3

Example 4

Add to Accumulator

Syntaxes 1, 2, 3, and 5: Class 3A (see page 3-5)

Syntaxes 1, 2, and 3: Class 3B (see page 3-6)

Syntax 4: Class 4A (see page 3-7)
Syntax 4: Class 4B (see page 3-8)
Syntax 6: Class 7 (see page 3-12)

Syntaxes 7 and 8: Class 2 (see page 3-4)
Syntaxes 9 and 10: Class 1 (see page 3-3)

ADD *AR3+, 14, A

Before Instruction

A | 0000001200 |
c | 1]
AR3 | 0100 |
SXM | 1]
Data Memory
0100h | 1500 |
ADD A, -8, B
Before Instruction
A | 0000001200 |
B | 0000001800 |
I 1]
ADD #4568, 8, A, B
Before Instruction
A [__0000001200 |
B | 0000001800 |
I 1]

After Instruction

A
S
AR3
Y —

0100h 1500

After Instruction

A 00 0000 1200
B 00 0000 1812

After Instruction

A 00 0000 1200
00 0045 7A00

@

|

ADD *AR2+, *AR2—, A ;after accessing the operands, AR2

;is incremented by one.

ADD

Example 4 shows the same auxiliary register (AR2) with different addressing
modes specified for both operands. The mode defined by the Xmod field

(*AR2+) is used for addressing.

Assembly Language Instructions

ADDC Add to Accumulator With Carry

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example

ADDC Smem, src

Smem: Single data-memory operand
Src: A (accumulator A)
B (accumulator B)

15, 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o o o o 1 1 s|1 A A A A A A A

(Smem) + (src) + (C) — src

Affected by OVM, C
Affects C and OVsrc

This instruction adds the 16-bit single data-memory operand Smem and the
value of the carry bit (C) to src. This instruction stores the result in src. Sign
extension is suppressed regardless of the value of the SXM bit.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 3A (see page 3-5)
Class 3B (see page 3-6)

ADDC *+AR2(5), A

Before Instruction After Instruction
A | 0000000013 | A
c | 1 c [0
AR2 | 0100] AR2
Data Memory
0105h | 0004 | 0105h

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example 1

Example 2

Add Long-Immediate Value to Memory ADDM

ADDM #lk, Smem

Smem: Single data-memory operand
-32768 < |k < 32767

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 0 1 l|| A A A A A A A

16-bit constant

#lk + (Smem) — Smem

Affected by OVM and SXM
Affects C and OVA

This instruction adds the 16-bit single data-memory operand Smem to the
16-bit immediate memory value /k and stores the result in Smem.

Note:

This instruction is not repeatable.

2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 18A (see page 3-39)
Class 18B (see page 3-39)

ADDM 0123Bh, *AR4+

Before Instruction After Instruction
AR4 | 0100] AR4
Data Memory
0100h | 0004 | 0100h

ADDM OFFF8h, *AR4+

Before Instruction After Instruction
oM | 1] oM
sxm | 1] SXM
AR4 | 0100 | AR4

Data Memory
0100h | 8007 | 0100h

Assembly Language Instructions 4-9

ADDS Add to Accumulator With Sign-Extension Suppressed

Syntax ADDS Smem, src
Operands Smem: Single data-memory operands
Src: A (accumulator A)

B (accumulator B)

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o o o0 o 0o 1 s|1 A A A A A A A

Execution uns(Smem) + (src) — src

Status Bits Affected by OVM

Affects C and OVsrc

Description This instruction adds the 16-bit single data-memory operand Smemto srcand
stores the result in src. Sign extension is suppressed regardless of the value
of the SXM bit.

Words 1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

Cycles 1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Classes Class 3A (see page 3-5)
Class 3B (see page 3-6)
Example ADDS *AR2-, B
Before Instruction After Instruction
B | 0000000003 | B
c | 8 c 9
AR2 | 0100 | AR2
Data Memory

0104h | FO0O06 | 0104h

4-10

Syntax

Operands

Opcode

Execution

Status Bits

Description

AND With Accumulator AND

AND Smem, src

AND #lk [, SHFT], src|, dst]
AND #lk, 16, src|, dst]
AND src|[, SHIFT], [, dst]

Smem: Single data-memory operand
src: A (accumulator A)
B (accumulator B)
-16 < SHIFT < 15
0 < SHFT = 15
0 = |k = 65535

1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o o 1 1 0o o s|1 A A A A A A A
2:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111005D|00115HFT

16-bit constant
3:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
i1 1 1 1 o O S D|O 1 1 o 0 0 1 1
16-bit constant

4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 1 0o o s bpl1 o

o
(9]
T
m
—

1: (Smem) AND (src) — src

2: Ik << SHFT AND (src)— dst

3: |k << 16 AND (src)— dst

4: (dst) AND (src) << SHIFT — dst

None
This instruction ANDs the following to src:

(0 A 16-bit operand Smem
[A 16-bitimmediate operand /k
[The source or destination accumulator (src or dst)

If a shiftis specified, this instruction left-shifts the operand before the AND. For
a left shift, the low-order bits are cleared and the high-order bits are not sign
extended. For a right shift, the high-order bits are not sign extended.

Assembly Language Instructions 4-11

AND AND With Accumulator

Words Syntaxes 1 and 4: 1 word
Syntaxes 2 and 3: 2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

Cycles Syntaxes 1 and 4: 1 cycle
Syntaxes 2 and 3: 2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Classes Syntax 1: Class 3A (see page 3-5)
Syntax 1: Class 3B (see page 3-6)
Syntaxes 2 and 3: Class 2 (see page 3-4)
Syntax 4: Class 1 (see page 3-3)

Example 1 AND *AR3+, A
Before Instruction After Instruction
A [0000FF 1200 | A
AR3 | 0100] AR3
Data Memory
0100h | 1500 0100h
Example 2 AND A, 3,B
Before Instruction After Instruction
A | 0000001200 | A
B | 0000001800 | B

4-12

Syntax

Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Classes

Example 1

Example 2

AND Memory With Long Immediate ANDM

ANDM #lk, Smem

Smem: Single data-memory operand
0 < lk = 65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 0 0 0|I A A A A A A A

16-bit constant

Ik AND (Smem) — Smem
None

This instruction ANDs the 16-bit single data-memory operand Smem with a
16-bit long constant /k. The result is stored in the data-memory location speci-
fied by Smem.

Note:

This instruction is not repeatable.

2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 18A (see page 3-39)
Class 18B (see page 3-39)

ANDM #00FFh, *AR4+

Before Instruction After Instruction
AR4 | 0100 | AR4
Data Memory
0100h | 0444] 0100h

ANDM #0101h, 4, DP =0

Before Instruction After Instruction
Data Memory
0004h | 00 0000 0100 | 0004h [00 0000 0100

Assembly Language Instructions 4-13

B[D]

Syntax
Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Classes

Example 1

Example 2

4-14

Branch Unconditionally

B [D] pmad

0 < pmad = 65535

12

11

10

9

8 7

1

0

0

z

0 0

16-bit constant

15 14 13
1 1 1
pmad — PC
None

This instruction passes control to the designated program-memory address
(pmad), which can be either a symbolic or numeric address. If the branch is
delayed (specified by the D suffix), the two 1-word instructions or the one
2-word instruction following the branch instruction is fetched from program
memory and executed.

Note:

This instruction is not repeatable.

2 words

4 cycles

2 cycles (delayed)

Class 29A (see page 3-66)

B 2000h

BD 1000h

ANDM 4444h, *AR1+

Before Instruction

After the operand has been ANDed with 4444h, the program continues execut-
ing from location 1000h.

PC

Before Instruction

1F45 |

1F45]

After Instruction

2000

After Instruction

1000

Syntax

Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Classes

Example 1

Example 2

Branch to Location Specified by Accumulator BACCI[D]

BACC [D] src

src: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|l 1 1 1 0 1 Z S 1 1 1 0 0 0 1 0

(src(15-0)) — PC
None

This instruction passes control to the 16-bit address in the low part of src (bits
15-0). If the branch is delayed (specified by the D suffix), the two 1-word
instructions or the one 2-word instruction following the branch instruction is
fetched from program memory and executed.

Note:

This instruction is not repeatable.

1 word

6 cycles
4 cycles (delayed)

Class 30A (see page 3-67)

BACC A
Before Instruction After Instruction
A [0000003000 | A
PC | 1F45] PC
BACCD B
ANDM 4444h, *AR1+
Before Instruction After Instruction
B [__0000002000 | B
PC | 1F45] PC

After the operand has been ANDed with 4444h value, the program continues
executing from location 2000h.

Assembly Language Instructions 4-15

BANZ[D]

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example 1

Example 2

4-16

Branch on Auxiliary Register Not Zero

BANZ [D] pmad, Sind

Sind: Single indirect addressing operand

0 < pmad = 65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
OllOllZO|IAAAAAA
16-bit constant
If (ARx) = 0)
Then
pmad — PC
Else
(PC)+2—=PC
None

This instruction branches to the specified program-memory address (pmad)
if the value of the current auxiliary register ARx is not 0. Otherwise, the PC is
incremented by 2. If the branch is delayed (specified by the D suffix), the two
1-word instructions or the one 2-word instruction following the branch instruc-

tion is fetched from program memory and executed.

Note:

This instruction is not repeatable.

2 words

4 cycles (true condition)
2 cycles (false condition)
2 cycles (delayed)

Class 29A (see page 3-66)

BANZ 2000h, *AR3-

Before Instruction

PCc |

1000 |

AR3 |

0005 |

BANZ 2000h, *AR3—

Before Instruction

Pc |

1000 |

AR3 |

0000 |

After Instruction

PC 2000
AR3 0004

After Instruction

PC 1002
AR3 FEFE

Example 3

Example 4

Branch on Auxiliary Register Not Zero BANZ[D]

BANZ 2000h, *AR3(-1)

Before Instruction After Instruction
PC | 1000 | PC 1003
AR3 | 0001 | AR3 0001

BANZD 2000h, *AR3—
ANDM 4444h, *AR5+

Before Instruction After Instruction
PC | 1000 | PC 2000
AR3 | 0004 | AR3 0003

After the memory location has been ANDed with 4444h, the program contin-
ues executing from location 2000h.

Assembly Language Instructions 4-17

BC[D] Branch Conditionally

Syntax

Operands

Opcode

Execution

Status Bits

Description

4-18

BC [D] pmad, cond |, cond [, cond 1]
0 < pmad = 65535

The following table lists the conditions (cond operand) for this instruction.

Condition Condition

Cond Description Code Cond Description Code

BIO BIO low 0000 0011 NBIO BIO high 0000 0010
C c=1 0000 1100 NC C=0 0000 1000
TC TC=1 0011 0000 NTC TC=0 0010 0000
AEQ (A)=0 0100 0101 BEQ (B)=0 0100 1101
ANEQ (A) =0 0100 0100 BNEQ (B) =0 0100 1100
AGT (A) >0 0100 0110 BGT (B) >0 0100 1110
AGEQ (A =0 0100 0010 BGEQ B)=0 0100 1010
ALT (A) <O 0100 0011 BLT (B) <0 0100 1011
ALEQ (A) <0 01000111 || BLEQ (B) <0 0100 1111
AOV A overflow 0111 0000 BOV B overflow 0111 1000
ANOV A no overflow 0110 0000 BNOV B no overflow 0110 1000
UNC Unconditional 0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 Z oyc ¢ ¢ ¢ c¢c ¢ c cC

16-bit constant

If (cond(s))
Then

pmad — PC
Else

(PC)+2 —PC

Affects OVA or OVB if OV or NOV is chosen

This instruction branches to the program-memory address (pmad) if the speci-
fied condition(s) is met. The two 1-word instructions or the one 2-word instruc-
tion following the branch instruction is fetched from program memory. If the
condition(s) is met, the two words following the instruction are flushed from the
pipeline and execution begins at pmad. If the condition(s) is not met, the PC
is incremented by 2 and the two words following the instruction are executed.

Words
Cycles

Classes

Branch Conditionally BC[D]

If the branch is delayed (specified by the D suffix), the two 1-word instructions
or the one 2-word instruction is fetched from program memory and executed.
The two words following the delayed instruction have no effect on the condi-
tions being tested. If the condition(s) is met, execution continues at pmad. If
the condition(s) is not met, the PC is incremented by 2 and the two words
following the delayed instruction are executed.

This instruction tests multiple conditions before passing control to another sec-
tion of the program. This instruction can test the conditions individually or in
combination with other conditions. You can combine conditions from only one
group as follows:

Groupl:

Group 2:

You can select up to two conditions. Each of these conditions
must be from a different category (category A or B); you cannot
have two conditions from the same category. For example, you
cantest EQ and OV at the same time but you cannottest GT and
NEQ at the same time. The accumulator must be the same for
both conditions; you cannot test conditions for both accumula-
tors with the same instruction. For example, you can test AGT
and AQV at the same time, but you cannot test AGT and BOV
at the same time.

You can select up to three conditions. Each of these conditions
must be from a different category (category A, B, or C); you can-
not have two conditions from the same category. For example,
you cantest TC, C, and BIO at the same time but you cannot test
NTC, C, and NC at the same time.

Conditions for This Instruction

Category A

EQ
NEQ
LT
LEQ
GT
GEQ

Group 1 Group 2
Category B Category A Category B Category C
oV TC C BIO
NOV NTC NC NBIO

Note:

This instruction is not repeatable.

2 words

5 cycles (true condition)
3 cycles (false condition)
3 cycles (delayed)

Class 31A (see page 3-68)

Assembly Language Instructions 4-19

BC[D] Branch Conditionally

Example 1

Example 2

Example 3

Example 4

4-20

BC 2000h, AGT

Before Instruction After Instruction
A | 0000000053 | A
PC | 1000 | PC
BC 2000h, AGT
Before Instruction After Instruction
A | _FFFFFF FFFF | A
PC | 1000 | PC

BCD 1000h, BOV
ANDM 4444h, *AR1+

Before Instruction After Instruction
PCc | 3000 | PC 1000
ovB | 1] ovB

After the memory location is ANDed with 4444h, the branch is taken if the
condition (OVB) is met. Otherwise, execution continues at the instruction fol-
lowing this instruction.

BC 1000h, TC, NC, BIO

Before Instruction After Instruction
Pc | 3000 | PC 3002
c | 1] c

Syntax

Operands

Opcode

Execution
Status Bits

Description

Words
Cycles
Classes

Example

TestBit BIT

BIT Xmem, BITC

Xmem: Dual data-memory operand
0 = BITC = 15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|10010 110|XXXXB | T C

(Xmem(15 - BITC)) —= TC
Affects TC

This instruction copies the specified bit of the dual data-memory operand
Xmem into the TC bit of status register STO. The following table lists the bit
codes that correspond to each bit in data memory.

The bit code corresponds to BITC and the bit address corresponds to
(15 - BITC).

Bit Codes for This Instruction

Bit Address Bit Code Bit Address Bit Code
(LSB) 0 1111 8 0111
1 1110 9 0110
2 1101 10 0101
3 1100 11 0100
4 1011 12 0011
5 1010 13 0010
6 1001 14 0001
7 1000 (MSB) 15 0000
1 word
1 cycle

Class 3A (see page 3-5)

BIT *AR5+, 15-12; test bit 12

Before Instruction After Instruction
AR5 | 0100 | AR5
TC | 0] TC
Data Memory
0100h | 7688 | 0100h

Assembly Language Instructions 4-21

BITF Test Bit Field Specified by Immediate Value

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example 1

Example 2

4-22

BITF Smem, #lk

Smem: Single data-memory operand
0 < Ik = 65535

15 14 13 12 11 10 9 8 7

0o 1 1 0 0 0 0 1|1

16-bit constant

If (Smem) AND Ik) = 0
Then

0—-TC
Else

1—-TC

Affects TC

This instruction tests the specified bit or bits of the data-memory value Smem.
If the specified bit (or bits) is 0, the TC bit in status register STO is cleared to
0; otherwise, TC is setto 1. The /k constant is a mask for the bit or bits tested.

2 words

Add 1 word when using long-offset indirect addressing or absolute addressing

with an Smem.

2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing

with an Smem.

Class 6A (see page 3-10)
Class 6B (see page 3-11)

BITF 5, 00FFh
Before Instruction
TC | x|
DP | 004]
Data Memory
0205h | 5400
BITF 5, 0800h
Before Instruction
TC | x|
DP | 004 |
Data Memory
0205h | OF7F]

After Instruction

TC [0
pp [oo4]

0205h 5400

After Instruction

re 1
DP

0205h OF7F

Syntax
Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Classes

Test Bit Specified by T BITT

BITT Smem
Smem: Single data-memory operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o 1 2 o 1 0o ol1 A A A A A A A

(Smem (15 - T(3-0))) = TC
Affects TC

This instruction copies the specified bit of the data-memaory value Smem into
the TC bit in status register STO. The four LSBs of T contain a bit code that
specifies which bit is copied.

The bit address corresponds to (15 — T(3-0)). The bit code corresponds to the
content of T(3-0).

Bit Codes for This Instruction

Bit Address Bit Code Bit Address Bit Code

(LSB) 0 1111 8 0111
1 1110 9 0110
2 1101 10 0101
3 1100 11 0100
4 1011 12 0011
5 1010 13 0010
6 1001 14 0001
7 1000 (MSB) 15 0000

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 3A (see page 3-5)
Class 3B (see page 3-6)

Assembly Language Instructions 4-23

BITT Test Bit Specified by T

Example BITT *AR7+0
Before Instruction After Instruction
T d T
c | g Tc
ARO | 0008 ARO
AR7 | 0100 | AR7
Data Memory
0100h | 0008 | 0100h

4-24

Call Subroutine at Location Specified by Accumulator CALA[D]

Syntax CALA [D] src

Operands Src: A (accumulator A)
B (accumulator B)

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
| 1 1 1 1 0 1 Z S 1 1 1 0 0 0 1 1

Execution Nondelayed
(SP)—-1—-SP
(PC)+1—TOS
(src(15-0)) — PC

Delayed
(SP)-1—-5SP
(PC)+3 —=TOS
(src(15-0)) — PC

Status Bits None

Description This instruction passes control to the 16-bit address in the low part of src (bits
15-0). If the call is delayed (specified by the D suffix), the two 1-word instruc-
tions or the one 2-word instruction following the call instruction is fetched from
program memory and executed.

Note:

This instruction is not repeatable.

Words 1 word

Cycles 6 cycles
4 cycles (delayed)

Classes Class 30B (see page 3-67)
Example 1 CALA A
Before Instruction After Instruction
A | 0000003000 | A
PC | 0025 | PC
sp | 1111 | sp
Data Memory
1110h | 4567 | 1110h

Assembly Language Instructions 4-25

CALA[D] call Subroutine at Location Specified by Accumulator

Example 2 CALAD B
ANDM 4444h, *AR1+
Before Instruction After Instruction
B |__0000002000 | B
PC | 0025 | PC
sp | 1111 sP
Data Memory
1110h | 4567 | 1110h

After the memory location has been ANDed with 4444h, the program contin-
ues executing from location 2000h.

4-26

Call Unconditionally CALL[D]

Syntax CALL [D] pmad
Operands 0 < pmad = 65535
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 Z 0 0 1 1 1 0 1 0 0

16-bit constant

Execution Nondelayed
(SP) - 1—-5SP
(PC) + 2 —=TOS
pmad — PC

Delayed

(SP) — 1—-SP
(PC)+4 - TOS
pmad — PC

Status Bits None

Description This instruction passes control to the specified program-memory address
(pmad). The return address is pushed onto the TOS before pmadis loaded into
PC. Ifthe call is delayed (specified by the D suffix), the two 1-word instructions
or the one 2-word instruction following the call instruction is fetched from pro-
gram memory and executed.

Note:

This instruction is not repeatable.

Words 2 words

Cycles 4 cycles
2 cycles (delayed)

Classes Class 29B (see page 3-66)

Assembly Language Instructions 4-27

CALL[D] call Unconditionally

Example 1 CALL 3333h
Before Instruction After Instruction
PC | 0025] PC
sp | 1111 | sp
Data Memory
1110h | 4567 | 1110h
Example 2 CALLD 1000h

ANDM #4444h, *AR1+

Before Instruction After Instruction

PC | 0025 | PC

sp | 1111] sP
Data Memory

1110h | 4567 | 1110h

After the memory location has been ANDed with 4444h, the program contin-
ues executing from location 1000h.

4-28

Call Conditionally CCI[D]

Syntax CC D] pmad, cond|[, cond|, cond]]
Operands 0 < pmad = 65535

The following table lists the conditions (cond operand) for this instruction.

Condition Condition

Cond Description Code Cond Description Code
BIO BIO low 0000 0011 NBIO BIO high 0000 0010
C c=1 0000 1100 NC C=0 0000 1000
TC TC=1 0011 0000 NTC TC=0 0010 0000
AEQ A)=0 0100 0101 BEQ B)=0 0100 1101
ANEQ (A) =0 0100 0100 BNEQ B)=0 0100 1100
AGT (A) >0 0100 0110 BGT (B)>0 0100 1110
AGEQ (A)=0 0100 0010 BGEQ B)=0 0100 1010
ALT (A) <0 0100 0011 || BLT (B)<0 0100 1011
ALEQ (A <0 01000111 ||BLEQ (B) <0 0100 1111
AQV A overflow 0111 0000 BOV B overflow 0111 1000
ANOV A no overflow 0110 0000 BNOV B no overflow 0110 1000
UNC Unconditional 0000 0000

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 z i1, C¢C C€C C € € € cCc cC

16-bit constant

Execution Nondelayed

If (cond(s))

Then
(SP) — 1—-SP
(PC) + 2 = TOS
pmad — PC

Else
(PC)+2 —=PC

Assembly Language Instructions 4-29

CC[D] call Conditionally

Status Bits

Description

4-30

Delayed
If (cond(s))
Then
(SP) —1—-SP
(PC) +4 — TOS
pmad — PC
Else
(PC)+2 —=PC

Affects OVA or OVB (if OV or NOV is chosen)

This instruction passes control to the program-memory address (pmad) if the
specified condition(s) is met. The two 1-word instructions or the one 2-word
instruction following the call instruction is fetched from program memory. If the
condition(s) is met, the two words following the instruction are flushed from the
pipeline and execution begins at pmad. If the condition(s) is not met, the PC
is incremented by 2 and the two words following the instruction are executed.

If the call is delayed (specified by the D sulffix), the two 1-word instructions or
the one 2-word instruction is fetched from program memory and executed. The
two words following the delayed instruction have no effect on the conditions
being tested. If the condition(s) is met, execution continues at pmad. If the
condition(s) is not met, the PC is incremented by 2 and the two words following
the delayed instruction are executed.

This instruction tests multiple conditions before passing control to another sec-
tion of the program. This instruction can test the conditions individually or in
combination with other conditions. You can combine conditions from only one
group as follows:

Groupl: You can select up to two conditions. Each of these conditions
must be from a different category (category A or B); you cannot
have two conditions from the same category. For example, you
cantest EQ and OV at the same time but you cannot test GT and
NEQ at the same time. The accumulator must be the same for
both conditions; you cannot test conditions for both accumula-
tors with the same instruction. For example, you can test AGT
and AQV at the same time, but you cannot test AGT and BOV
at the same time.

Group 2: You can select up to three conditions. Each of these conditions
must be from a different category (category A, B, or C); you can-
not have two conditions from the same category. For example,
you cantest TC, C, and BIO at the same time but you cannot test
NTC, C, and NC at the same time.

Words
Cycles

Classes

Example 1

Example 2

Call Conditionally CCI[D]

Conditions for This Instruction

Group 1 Group 2
Category A Category B Category A Category B Category C
EQ ov TC C BIO
NEQ NOV NTC NC NBIO
LT
LEQ
GT
GEQ
I Note: I

This instruction is not repeatable.

2 words

5 cycles (true condition)
3 cycles (false condition)
3 cycles (delayed)

Class 31B (see page 3-69)
CC 2222h, AGT

Before Instruction

A [0000003000 |
PC | 0025 |
sp | 1111]
Data Memory
1110h | 4567 |

CCD 1000h, BOV
ANDM 4444h, *AR1+

Before Instruction

pc | 0025 |
OVB | 1]
sp | 1111 |
Data Memory
1110h | 4567 |

After Instruction

A 00 0000 3000

PC 2222
SP 1110

1110h 0027

After Instruction

PC 1000

ove 1
SP 1110

1110h 0029

After the memory location has been ANDed with 4444h, the program contin-

ues executing from location 1000h.

Assembly Language Instructions 4-31

CMPL complement Accumulator

Syntax CMPL src|, dst]

Operands src, dst: A (accumulator A)
B (accumulator B)

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 1 1 1 1 0 1 S D| 1 0 0 1 0 0 1 1

Execution (src) — dst
Status Bits None
Description This instruction calculates the 1s complement of the content of src (this is a

logical inversion). The result is stored in dst, if specified, or src otherwise.

Words 1 word
Cycles 1 cycle
Classes Class 1 (see page 3-3)
Example CMPLA, B
Before Instruction After Instruction
A | FC DFFA AEAA] A FC DFFA AEAA
B [0000007899 | B 03 2005 5155

4-32

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example

Compare Memory With Long Immediate CMPM

CMPM Smem, #lk

Smem: Single data-memory operand
-32768 < |k < 32767

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 0 0 0|I A A A A A A A

16-bit constant

If (Smem) = Ik
Then

1—-TC
Else

0—-TC

Affects TC

This instruction compares the 16-bit single data-memory operand Smem to
the 16-bit constant /k . If they are equal, TC is setto 1. Otherwise, TCis cleared
to 0.

2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 6A (see page 3-10)
Class 6B (see page 3-11)

CMPM *AR4+, 0404h

Before Instruction After Instruction
TC | 1] Tc [
AR4 | 0100 AR4
Data Memory
0100h | 4444] 0100h

Assembly Language Instructions 4-33

CMPR Compare Auxiliary Register With ARO

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

4-34

CMPR CC, ARx

0=CC=3
ARx: ARO-AR7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 1 1 1 0 1 C C 1 0 1 0 1 A R X

If (cond)

Then
1—-TC

Else
0—-TC

Affects TC

This instruction compares the content of the designated auxiliary register
(ARX) to the content of ARO and sets the TC bit according to the comparison.
The comparison is specified by the CC (condition code) value (see the follow-
ing table). If the condition is true, TC is set to 1. If the condition is false, TC is
cleared to 0. All conditions are computed as unsigned operations.

Condition Condition Code (CC) Description
EQ 00 Test if (ARX) = (ARO)
LT 01 Test if (ARX) < (ARO)
GT 10 Test if (ARX) > (ARO)
NEQ 1 Test if (ARX) # (ARO)
1 word
1 cycle

Class 1 (see page 3-3)

CMPR 2, AR4
Before Instruction After Instruction
TC | 1] tc [9
ARO | FFFF| ARO
AR4 | 7FFF] AR4

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Compare, Select and Store Maximum CMPS

CMPS src, Smem

src: A (accumulator A)
B (accumulator B)
Smem: Single data-memory operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o o 1 1 1 s|i1 A A A A A A A

If ((src(31-16)) > (src(15-0)))
Then
(src(31-16)) — Smem
(TRN) << 1 — TRN
0 — TRN(0)
0—-TC
Else
(src(15-0)) — Smem
(TRN) << 1 — TRN
1 — TRN(0)
1—-TC

Affects TC

This instruction compares the two 16-bit 2s-complement values located in the
high and low parts of src and stores the maximum value in the single data-
memory location Smem. If the high part of src (bits 31-16) is greater, a 0 is
shifted into the LSB of the transition register (TRN) and the TC bit is cleared
to 0. If the low part of src (bits 15-0) is greater, a 1 is shifted into the LSB of
TRN and the TC bit is set to 1.

This instruction does not follow the standard pipeline operation. The compari-
son is performed in the read phase; thus, the src value is the value one cycle
before the instruction executes. TRN and the TC bit are updated during the
execution phase.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 10A (see page 3-22)
Class 10B (see page 3-23)

Assembly Language Instructions 4-35

CMPS compare, Select and Store Maximum

Example CMPS A, *AR4+
Before Instruction After Instruction
A [0023457899 | A
c | g Tc
AR4 | 0100 | AR4
TRN | 4444 TRN
Data Memory
0100h | 0000 | 0100h

4-36

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Double-Precision/Dual 16-Bit Add to Accumulator DADD

DADD Lmem, src|, dst]

Lmem: Long data-memory operand
src, dst: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 0 2 o o s pl]1 A A A A A A A
IfC16 =0
Then
(Lmem) + (src) — dst
Else

(Lmem(31-16)) + (src(31-16)) — dst(39-16)
(Lmem(15-0)) + (src(15-0)) — dst(15-0)

Affected by SXM and OVM (only if C16 = 0)
Affects C and OVdst (or OVsrc, if dst is not specified)

This instruction adds the content of src to the 32-bit long data-memory oper-
and Lmem. If a dst is specified, this instruction stores the resultin dst. If no dst
is specified, this instruction stores the result in src. The value of C16 deter-
mines the mode of the instruction:

g IfC16=0,theinstructionis executed in double-precision mode. The 40-bit
srcvalue is added to the Lmem. The saturation and overflow bits are set
according to the result of the operation.

(1 If C16 =1, the instruction is executed in dual 16-bit mode. The high part
of src (bits 31-16) is added to the 16 MSBs of Lmem, and the low part of
src (bits 15-0) is added to the 16 LSBs of Lmem. The saturation and over-
flow bits are not affected in this mode. In this mode, the results are not sat-
urated regardless of the state of the OVM bit.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Lmem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Lmem.

Class 9A (see page 3-20)
Class 9B (see page 3-21)

Assembly Language Instructions 4-37

DADD Double-Precision/Dual 16-Bit Add to Accumulator

Example 1 DADD *AR3+, A, B
Before Instruction After Instruction
A | 0056788933 | A
B [__0000000000 | B
ci6 | 0] ce [o
AR3 | 0100 AR3T
Data Memory
0100h | 1534] 0100h
0101h | 3456 | 0101h
T Because this instruction is a long-operand instruction, AR3 is incremented by 2 after the
execution.
Example 2 DADD *AR3-, A, B
Before Instruction After Instruction
A | 0056783933 | A
B [0000000000 | B
ci6 | 1] C16
AR3 | 0100] AR3T
Data Memory
0100h | 1534] 0100h
0101h | 3456 | 0101h
T Because this instruction is a long-operand instruction, AR3 is decremented by 2 after the
execution.
Example 3 DADD *AR3—, A, B
Before Instruction After Instruction
A | 0056783933 | A
B [0000000000 | B
c16 | 0] cie [o
AR3 | 0101] AR3T
Data Memory
0100h | 1534 | 0100h
0101h | 3456 | 0101h
T Because this instruction is a long-operand instruction, AR3 is decremented by 2 after the
execution.

4-38

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Double-Precision Load With T Add/Dual 16-Bit Load With T Add/Subtract DADST

DADST Lmem, dst

Lmem: Long data-memory operand
dst: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0101101D|IAAAAAAA

fCl6=1
Then
(Lmem(31-16)) + (T) — dst(39-16)
(Lmem(15-0)) — (T) — dst(15-0)
Else
(Lmem) + ((T) + (T) << 16) — dst

Affected by SXM and OVM (only if C16 = 0)
Affects C and OVdst

This instruction adds the content of T to the 32-bit long data-memory operand
Lmem. The value of C16 determines the mode of the instruction:

1 [IfC16 =0, the instruction is executed in double-precision mode. Lmem s
added to a 32-bit value composed of the content of T concatenated with
the content of T left-shifted 16 bits (T <<16 + T). The result is stored in dst.

[If C16 =1, the instruction is executed in dual 16-bit mode. The 16 MSBs
of the Lmem are added to the content of T and stored in the upper 24 bits
of dst. At the same time, the content of T is subtracted from the 16 LSBs
of Lmem. The result is stored in the lower 16 bits of dst. In this mode, the
results are not saturated regardless of the state of the OVM bit.

Note:

This instruction is meaningful only if C16 is set to 1 (dual 16-bit mode).

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Lmem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Lmem.

Class 9A (see page 3-20)
Class 9B (see page 3-21)

Assembly Language Instructions 4-39

DADST Double-Precision Load With T Add/Dual 16-Bit Load With T Add/Subtract

T Because this instruction is a long-operand instruction, AR3 is decremented by 2 after the

Example 1 DADST *AR3—, A
Before Instruction
A [000000 0000 |
T | 2345 |
c16 | 1]
AR3 | 0100 |
Data Memory
0100h | 1534]
0101h | 3456 |
execution.
Example 2 DADST *AR3+, A
Before Instruction
A | 0000000000 |
T | 2345 |
ci6 | 0]
AR3 | 0100]
Data Memory
0100h | 1534 |
0101h | 3456 |

T Because this instruction is a long-operand instruction, AR3 is incremented by 2 after the

execution.

4-40

After Instruction

A 003879 1111

T 2345
c16
AR3T 00FE
0100h 1534
0101h 3456

After Instruction

A 00 3879 579B

T 2345
ce [o
AR3T 0102
0100h 1534
0101h 3456

Syntax
Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Classes

Example

Memory Delay DELAY

DELAY Smem
Smem: Single data-memory operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 0 o 1 1 0o 1|1 A A A A A A A

(Smem) - Smem + 1
None

This instruction copies the content of a single data-memory location Smem
into the next higher address. When data is copied, the content of the ad-
dressed location remains the same. This function is useful for implementing
a Z delay in digital signal processing applications. The delay operation is also
contained in the load T and insert delay (LTD) instruction (page 4-81) and the
multiply by program memory and accumulate with delay (MACD) instruction
(page 4-87).

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 24A (see page 3-56)
Class 24B (see page 3-56)

DELAY *AR3
Before Instruction After Instruction
AR3 | 0100 | AR3
Data Memory
0100h | 6CAC] 0100h
0101h | 0000 | 0101h

Assembly Language Instructions 4-41

DLD Double-Precision/Dual 16-Bit Long-Word Load to Accumulator

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example

4-42

DLD Lmem, dst

Lmem: Long data-memory operand
dst: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0101011D|IAAAAAAA
IfC16 = 0
Then
(Lmem) — dst
Else

(Lmem(31-16)) — dst(39-16)
(Lmem(15-0)) — dst(15-0)

Affected by SXM

This instruction loads dst with a 32-bit long operand Lmem. The value of C16
determines the mode of the instruction:

(1 IfC16 =0, the instruction is executed in double-precision mode. Lmem s
loaded to dst.

(O If C16 =1, the instruction is executed in dual 16-bit mode. The 16 MSBs
of Lmem are loaded to the upper 24 bits of dst. At the same time, the 16
LSBs of Lmem are loaded in the lower 16 bits of dst.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Lmem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Lmem.

Class 9A (see page 3-20)
Class 9B (see page 3-21)

DLD *AR3+, B
Before Instruction After Instruction
B [0000000000 | B
AR3 | 0100 AR3T

Data Memory

0100h | 6cAd 0100h
0101h | BD90| 0101h

t Because this instruction is a long-operand instruction, AR3 is incremented by 2 after the
execution.

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Double-Precision/Dual 16-Bit Subtract From Long Word DRSUB

DRSUB Lmem, src

Lmem: Long data-memory operand
src: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 0 2 1 0 o s|i1 A A A A A A A
IfC16=0
Then
(Lmem) — (src) — src
Else

(Lmem(31-16)) — (src(31-16)) — src(39-16)
(Lmem(15-0)) — (src(15-0)) — src(15-0)

Affected by SXM and OVM (only if C16 = 0)
Affects C and OVsrc

This instruction subtracts the content of src from the 32-bit long data-memory
operand Lmem and stores the result in src. The value of C16 determines the
mode of the instruction:

[IfC16 =0, the instruction is executed in double-precision mode. The con-
tent of src (32 bits) is subtracted from Lmem. The result is stored in src.

[If C16 =1, the instruction is executed in dual 16-bit mode. The high part
of src (bits 31-16) is subtracted from the 16 MSBs of Lmem and the result
is stored in the high part of src (bits 39—16). At the same time, the low part
of src (bits 15-0) is subtracted from the 16 LSBs of Lmem. The result is
stored in the low part of src (bits 15-0). In this mode, the results are not
saturated regardless of the state of the OVM bit.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Lmem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Lmem.

Class 9A (see page 3-20)
Class 9B (see page 3-21)

Assembly Language Instructions 4-43

DRSUB Double-Precision/Dual 16-Bit Subtract From Long Word

Example 1 DRSUB *AR3+, A
Before Instruction After Instruction
A |__0056788933 | A
c | 7 c [9
ci6 | 0] ce [o
AR3 | 0100] AR3T
Data Memory
0100h | 1534] 0100h
0101h | 3456 | 0101h
T Because this instruction is a long-operand instruction, AR3 is incremented by 2 after the
execution.
Example 2 DRSUB *AR3-, A
Before Instruction After Instruction
A | 0056783933 | A
c |] O —
c16 | 1 cie
AR3 | 0100] AR3T
Data Memory
0100h | 1534] 0100h
0101h | 3456 | 0101h
T Because this instruction is a long-operand instruction, AR3 is decremented by 2 after the

execution.

4-44

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Long-Word Load With T Add/Dual 16-Bit Load With T Subtract/Add DSADT

DSADT Lmem, dst

Lmem: Long data-memory operand
dst: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 0 12 1 1 1 Dl1 A A A A A A A

IfCle=1
Then
(Lmem(31-16)) — (T) — dst(39-16)
(Lmem(15-0)) + (T) — dst(15-0)
Else
(Lmem) — ((T) + (T << 16)) — dst

Affected by SXM and OVM (only if C16 = 0)
Affects C and OVdst

This instruction subtracts/adds the content of T from the 32-bit long data-
memory operand Lmem and stores the result in dst. The value of C16 deter-
mines the mode of the instruction:

] [If C16 =0, the instruction is executed in double-precision mode. A 32-bit
value composed of the content of T concatenated with the content of T left-
shifted 16 bits (T << 16 + T) is subtracted from Lmem. The result is stored
in dst.

[J IfC16 =1, the instruction is executed in dual 16-bit mode. The content of
T is subtracted from the 16 MSBs of Lmem and the result is stored in the
high part of dst (bits 39-16). At the same time, the content of T is added
to the 16 LSBs of Lmem and the result is stored in the low part of dst (bits
15-0). In this mode, the results are not saturated regardless of the state
of the OVM bit.

Note:

This instruction is meaningful only if C16 is set (dual 16-bit mode).

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Lmem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Lmem.

Assembly Language Instructions 4-45

DSADT Long-Word Load With T Add/Dual 16-Bit Load With T Subtract/Add

Classes Class 9A (see page 3-20)
Class 9B (see page 3-21)
Example 1 DSADT *AR3+, A
Before Instruction After Instruction
A [0000000000 | A
T z375] T
c | o] c [¢
c16 | 0] cie [0
AR3 | 0100] AR3T
Data Memory
0100h | 1534 | 0100h
0101h | 3456 | 0101h
T Because this instruction is a long-operand instruction, AR3 is incremented by 2 after the
execution.
Example 2 DSADT *AR3-, A
Before Instruction After Instruction
A [0000000000 | A
T 2345 | T
c | 0] c
ci6 | 1] c16
AR3 | 0100 | AR3T
Data Memory
0100h | 1534 | 0100h
0101h | 3456 | 0101h
t Because this instruction is a long-operand instruction, AR3 is decremented by 2 after the

execution.

4-46

Syntax

Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Classes

Example 1

Example 2

Store Accumulator in Long Word DST

DST src, Lmem

Src: A (accumulator A)
B (accumulator B)
Lmem: Long data-memory operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0100111$|IAAAAAAA

(src(31-0)) — Lmem
None

This instruction stores the content of srcin a 32-bit long data-memory location
Lmem.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Lmem.

2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Lmem.

Class 13A (see page 3-28)
Class 13B (see page 3-29)

DST B, *AR3+
Before Instruction After Instruction
B [006CACBDY0 | B
AR3 | 0100] AR3T
Data Memory
0100h | 0000 | 0100h
0101h | 0000 | 0101h

T Because this instruction is a long-operand instruction, AR3 is incremented by 2 after the
execution.

DST B, *AR3-
Before Instruction After Instruction
B [__006CACBD90 | B
AR3 | 0101] AR3T
Data Memory
0100h | 0000 | 0100h
0101h | 0000 | 0101h

T Because this instruction is a long-operand instruction, AR3 is decremented by 2 after the
execution.

Assembly Language Instructions 4-47

DSUB Double-Precision/Dual 16-Bit Subtract From Accumulator

Syntax DSUB Lmem, src
Operands Lmem: Long data-memory operand
Src: A (accumulator A)

B (accumulator B)

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0o 1 0 1 0 1 0 S|[I A A A A A A A
Execution IfC16=0
Then
(src) — (Lmem) — src
Else

(src(31-16)) — (Lmem(31-16)) — src(39-16)
(src(15-0)) — (Lmem(15-0)) — src(15-0)

Status Bits Affected by SXM and OVM (only if C16 = 0)
Affects C and OVsrc

Description This instruction subtracts the 32-bit long data-memory operand Lmem from
the content of src, and stores the result in src. The value of C16 determines
the mode of the instruction:

[IfC16 =0, the instruction is executed in double-precision mode. Lmem s
subtracted from the content of src.

(1 If C16 =1, the instruction is executed in dual 16-bit mode. The 16 MSBs
of Lmemare subtracted from the high part of src (bits 31-16) and the result
is stored in the high part of src (bits 39-16). At the same time, the 16 LSBs
of Lmem are subtracted from the low part of src (bits15—-0) and the result
is stored in the low part of src (bits 15-0).

Words 1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Lmem.

Cycles 1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Lmem.

Classes Class 9A (see page 3-20)
Class 9B (see page 3-21)

4-48

Double-Precision/Dual 16-Bit Subtract From Accumulator DSUB

Example 1 DSUB *AR3+, A
Before Instruction After Instruction
A | 0056788933 | A
ci6 | 0] cie [0
AR3 | 0100] AR3T
Data Memory
0100h | 1534 | 0100h
0101h | 3456 | 0101h
T Because this instruction is a long-operand instruction, AR3 is incremented by 2 after the
execution.
Example 2 DSUB *AR3—, A
Before Instruction After Instruction
A [0056783933 | A
c | 1] c
c16 | 1] C16
AR3 | 0100| AR3T
Data Memory
0100h | 1534] 0100h
0101h | 3456 | 0101h
T Because this instruction is a long-operand instruction, AR3 is decremented by 2 after the
execution.

Assembly Language Instructions 4-49

DSUBT Long-Word Load With T Subtract/Dual 16-Bit Load With T Subtract

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

4-50

DSUBT Lmem, dst

Lmem: Long data-memory operand
dst: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 0 1 1 1 o D|l1 A A A A A A A

IfCle=1
Then
(Lmem(31-16)) — (T) — dst(39-16)
(Lmem(15-0)) — (T) — dst(15-0)
Else
(Lmem) — ((T) + (T << 16)) — dst

Affected by SXM and OVM (only if C16 = 0)
Affects C and OVdst

This instruction subtracts the content of T from the 32-bit long data-memory
operand Lmem and stores the result in dst. The value of C16 determines the
mode of the instruction:

[If C16 =0, the instruction is executed in double-precision mode. A 32-bit
value composed of the content of T concatenated with the content of T left-
shifted 16 bits (T << 16 + T) is subtracted from Lmem. The result is stored
in dst.

[IfC16 =1, the instruction is executed in dual 16-bit mode. The content of
T is subtracted from the 16 MSBs of Lmem and the result is stored in the
high part of dst (bits 39-16). At the same time, the content of T is sub-
tracted from the 16 LSBs of Lmem and the result is stored in the low part
of dst (bits 15-0). In this mode, the results are not saturated regardless of
the value of the OVM bit.

Note:

This instruction is meaningful only if C16 is set to 1 (dual 16-bit mode).

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Lmem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Lmem.

Classes

Example 1

Example 2

Long-Word Load With T Subtract/Dual 16-Bit Load With T Subtract

Class 9A (see page 3-20)
Class 9B (see page 3-21)

DSUBT *AR3+, A

Before Instruction

A | 0000000000 |
T | 2345 |
c16 | of
AR3 | 0100 |
Data Memory
0100h | 1534
0101h | 3456 |

T Because this instruction is a long-operand instruction, AR3 is incremented by 2 after the

execution.

DSUBT *AR3—, A

Before Instruction

A | 0000000000 |
T | 2345 |
c16 | 1]
AR3 | 0100 |
Data Memory
0100h | 1534 |
0101h | 3456 |

After Instruction

A
T
ce [0
AR
0100h
0101h

After Instruction

A
T
C16
ARs'
0100h
0101h

DSUBT

T Because this instruction is a long operand instruction, AR3 is decremented by 2 after the

execution.

Assembly Language Instructions

4-51

EXP Accumulator Exponent

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example 1

Example 2

4-52

EXP src

src: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 1 1 1 0 1 0 S 1 0 0 0 1 1 1 0

If (src) = 0
Then

0—-T
Else

(Number of leading bits of src) — 8 = T
None

This instruction computes the exponent value, which is a signed 2s-comple-
ment value in the —8 to 31 range, and stores the result in T. The exponent is
computed by calculating the number of leading bits in src and subtracting 8
from this value. The number of leading bits is equivalent to the number of left
shifts needed to eliminate the significant bits from the 40-bit src with the excep-
tion of the sign bit. The src is not modified after this instruction.

The result of subtracting 8 from the number of leading bits produces a negative
exponent for accumulator values that have significant bits in the guard bits (the
eight MSBs of the accumulator used in error detection and correction). See the
normalization instruction (page 4-122).

1 word
1 cycle

Class 1 (see page 3-3)

EXP A
Before Instruction After Instruction
A | FFFFFFFFCB]| -53 A -53
T 0000] T 25
EXP B
Before Instruction After Instruction
B | 0785432105 | B
T FFFg T 4t

t The value in accumulator B has significant bits in the guard bits, which results in a negative
exponent.

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example 1

Example 2

Far Branch Unconditionally ~FB[D]

FB [D] extpmad
0 < extpmad < 7F FFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 4 0 1 | 7-bit constant = pmad(22—16)

16-bit constant = pmad(15-0)

(pmad(15-0)) — PC
(pmad(22-16)) — XPC

None

This instruction passes control to the program-memory address pmad
(bits 15-0) on the page specified by pmad (bits 22-16). The pmad can be
either a symbolic or numeric address. If the branch is delayed (specified by the
D suffix), the two 1-word instructions or the one 2-word instruction following the
branch instruction is fetched from program memory and executed.

Note:

This instruction is not repeatable.

2 words

4 cycles
2 cycles (delayed)

Class 29A (see page 3-66)

FB 012000h
Before Instruction After Instruction
PC | 1000] PC
xpc | o] xpc

2000h is loaded into the PC, 01h is loaded into XPC, and the program contin-
ues executing from that location.

FBD 7F1000h
ANDM #4444h, *AR1+

Before Instruction After Instruction
PC | 2000 | PC 1000
xpC | o] xpC

After the operand has been ANDed with 4444h, the program continues execut-
ing from location 1000h on page 7Fh.

Assembly Language Instructions 4-53

FBACC|D]

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example 1

Example 2

4-54

Far Branch to Location Specified by Accumulator

FBACC [D] src

src: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 1 1 1 0 1 z S 1 1 1 0 0 1 1 0

(src(15-0)) — PC
(src(22-16)) — XPC

None

This instruction loads the XPC with the value in src (bits 22—-16) and passes
control to the 16-bit address in the low part of src (bits 15-0). If the branch is
delayed (specified by the D suffix), the two 1-word instructions or the one
2-word instruction following the branch instruction is fetched from program
memory and executed.

Note:

This instruction is not repeatable.

1 word

6 cycles
4 cycles (delayed)

Class 30A (see page 3-67)

FBACC A
Before Instruction After Instruction
A [__0000013000 | A
PC | 1000 | PC
xpC | 00] XPC

lhisloadedintothe XPC, 3000his loaded into the PC, and the program contin-
ues executing from that location on page 1h.

FBACCD B
ANDM 4444h *AR1+
Before Instruction After Instruction
B |__00007F 2000 | B
XPC | 01] XPC

After the operand has been ANDed with 4444h value, 7Fh is loaded into the
XPC, and the program continues executing from location 2000h on page 7Fh.

Far Call Subroutine at Location Specified by Accumulator FCALA[D]

Syntax FCALA [D] src

Operands src: A (accumulator A)
B (accumulator B)

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 1 0o 1 z s[1 1 1 0o 0o 1 1 1

Execution Nondelayed
(SP)-1—SP
(PC)+1—-TOS
(SP)-1—-SP
(XPC) - TOS
(src(15-0)) — PC
(src(22-16)) — XPC

Delayed
(SP)-1—-SP
(PC)+3 = TOS
(SP)-1—-SP
(XPC) — TOS
(src(15-0)) — PC
(src(22-16)) — XPC

Status Bits None

Description This instruction loads the XPC with the value in src (bits 22—16) and passes
control to the 16-bit address in the low part of src (bits 15-0). If the call is
delayed (specified by the D suffix), the two 1-word instructions or the one
2-word instruction following the call instruction is fetched from program
memory and executed.

Note:

This instruction is not repeatable.

Words 1 word

Cycles 6 cycles
4 cycles (delayed)

Classes Class 30B (see page 3-67)

Assembly Language Instructions 4-55

FCALA[D] Far call Subroutine at Location Specified by Accumulator

Example 1 FCALA A
Before Instruction After Instruction
A [__00007F 3000 | A
PC | 0025] PC
xpc | o] XPC
sp | 1111 | sp
Data Memory
1110h | 4567 | 1110h
110Fh | 4567 | 110Fh
Example 2 FCALAD B
ANDM #4444h, *AR1+
Before Instruction After Instruction
B |__0000202000 | B
PC | 0025] PC
xpc | 7] XPC
sp | 1111 | sp
Data Memory
1110h | 4567 | 1110h
110Fh | 4567 | 110Fh

After the memory location has been ANDed with 4444h, the program contin-
ues executing from location 2000h on page 20h.

4-56

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Far Call Unconditionally FCALL[D]

FCALL [D] extpmad
0 < extpmad < 7F FFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0

1 1 1 1 1 0 Zz 1 1| 7-bitconstant=pmad(22-16)

16-bit constant = pmad(15-0)

Nondelayed

(SP) — 1—-SP

(PC) + 2 —-TOS
(SP)-1—-SP

(XPC) - TOS
(pmad(15-0)) — PC
(pmad(22-16)) — XPC

Delayed
(SP)-1—-SP
(PC)+4 - TOS
(SP)-1—-SP

(XPC) - TOS
(pmad(15-0)) — PC
(pmad(22-16)) — XPC

None

This instruction passes control to the specified program-memory address
pmad (bits 15-0) on the page specified by pmad (bits 22—-16). The return
address is pushed onto the stack before pmad is loaded into PC. If the call is
delayed (specified by the D suffix), the two 1-word instructions or the one
2-word instruction following the call instruction is fetched from program

memory and executed.

Note:

This instruction is not repeatable.

2 words

4 cycles
2 cycles (delayed)

Class 29B (see page 3-66)

Assembly Language Instructions

4-57

FCALL[D] Far call Unconditionally

Example 1 FCALL 013333h
Before Instruction
PC | 0025 |
XPC | 00]
sP | 1111]
Data Memory
1110h | 4567 |
110Fh | 4567 |
Example 2 FCALLD 301000h

ANDM #4444h, *AR1+

Before Instruction

pc | 3001 |

XPC | 7F|

sp | 1111 |
Data Memory

1110h | 4567 |

110Fh | 4567 |

After the memory location has been ANDed with 4444h, the program contin-

ues executing from location 1000h.

4-58

After Instruction

PC 3333
xpC
SP 110F

1110h 0027
110Fh 0000

After Instruction

PC 1000

xpC
SP 110F

1110h 3005
110Fh 007F

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

Symmetrical Finite Impulse Response Filter

FIRS Xmem, Ymem, pmad

Xmem, Ymem: Dual data-memory operands
0 < pmad = 65535

15 14 13 12 11 10 9 8 7 6 5 4 3

FIRS

1 1 1 0 0 0 0 0|lX X X X Y

16-bit constant

pmad — PAR
While (RC) = 0
(B) + (A(32-16)) x (Pmem addressed by PAR) — B
(Xmem) + (Ymem)) << 16 — A
(PAR) + 1 — PAR
(RC) —1—=RC

Affected by SXM, FRCT, and OVM
Affects C, OVA, and OVB

This instruction implements a symmetrical finite impulse respone (FIR) filter.
This instruction multiplies accumulator A (bits 32—16) with a Pmem value ad-
dressed by pmad (in the program address register PAR) and adds the result
to the value in accumulator B. At the same time, it adds the memory operands
Xmem and Ymem, shifts the result left 16 bits, and loads this value into accu-
mulator A. In the next iteration, pmad is incremented by 1. Once the repeat

pipeline is started, the instruction becomes a single-cycle instruction.

2 words
3 cycles
Class 8 (see page 3-15)

FIRS *AR3+, *AR4+, COEFFS

Before Instruction

After Instruction

A | 0000770000 | A

B | 0000000000 | B

FRCT | 0] FReT[0

AR3 | 0100] AR3

AR4 | 0200] AR4

Data Memory

0100h | 0055 | 0100h

0200h | 00AA] 0200h

Program Memory

COEFFS | 1234] COEFFS

Assembly Language Instructions

4-59

FRAME Stack Pointer Inmediate Offset

Syntax

Operands

Opcode
Execution
Status Bits

Description

Words
Cycles
Classes

Example

4-60

FRAME K
-128 = K = 127

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 1 1 0 1 1 1 0 K K K K K K K K

(SP) + K—SP
None

This instruction adds a short-immediate offset Kto the SP. There is no latency
for address generation in compiler mode (CPL = 1) or for stack manipulation
by the instruction following this instruction.

1 word
1 cycle

Class 1 (see page 3-3)

FRAME 10h
Before Instruction After Instruction
sp | 1000 | SP 1010

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example

Far Return FRETI[D]

FRET [D]
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 1 1 1 0 1 Z 0 1 1 1 0 0 1 0 0

(TOS) — XPC
(SP) + 1 —SP
(TOS) — PC
(SP) + 1 —SP

None

This instruction replaces the XPC with the 7-bit value from the TOS and re-
places the PC with the next 16-bit value on the stack. The SP is incremented
by 1 for each of the two replacements. If the return is delayed (specified by the
D suffix), the two 1-word instructions or one 2-word instruction following this
instruction is fetched and executed.

Note:

This instruction is not repeatable.

1 word

6 cycles
4 cycles (delayed)

Class 34 (see page 3-71)

FRET
Before Instruction After Instruction
pC | 2112 | PC
xpC | o1] XPC
sp | 0300 | SP
Data Memory
0300h | 0005 | 0300h
0301h | 1000 | 0301h

Assembly Language Instructions 4-61

FRETE[D] Enable Interrupts and Far Return From Interrupt

Syntax FRETE [D]
Operands None
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| 1 1 1 1 0 1 z 0 1 1 1 0 0 1 0 1

Execution (TOS) — XPC
(SP) + 1 -SSP
(TOS) — PC
(SP) + 1 -SSP
0 — INTM

Status Bits Affects INTM

Description This instruction replaces the XPC with the 7-bit value from the TOS and re-
places the PC with the next 16-bit value on the stack, continuing execution
fromthe new PC value. This instruction automatically clears the interrupt mask
bit (INTM) in ST1. (Clearing this bit enables interrupts.) If the return is delayed
(specified by the D suffix), the two 1-word instructions or one 2-word instruction
following this instruction is fetched and executed.

Note:

This instruction is not repeatable.

Words 1 word

Cycles 6 cycles
4 cycles (delayed)

Classes Class 34 (see page 3-71)
Example FRETE
Before Instruction After Instruction
PC | 2112 | PC
xPC | 05] XPC
sT1 | XCxx | ST1
sp | 0300] sp
Data Memory
0300h | 006E]| 0300h
0301h | 0110 | 0301h

4-62

Syntax
Operands

Opcode

Execution
Status Bits

Description

Idle Until Interrupt IDLE

IDLE K
1<K=3
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 1 N N 1 1 1 0 0 0 1
If Kis: NN is:
1 00
2 10
3 01
(PC) +1 — PC

Affected by INTM

This instruction forces the program being executed to wait until an unmasked
interrupt or reset occurs. The PC is incremented by 1. The device remains in
an idle state (power-down mode) until it is interrupted.

The idle state is exited after an unmasked interrupt, even if INTM = 1. If
INTM = 1, the program continues executing at the instruction following the
idle. If INTM = 0, the program branches to the corresponding interrupt service
routine. The interrupt is enabled by the interrupt mask register (IMR), regard-
less of the INTM value. The following options, indicated by the value of K,
determine the type of interrupts that can release the device from idle:

K=1 Peripherals, such as the timer and the serial ports, are still active.
The peripheral interrupts as well as reset and external interrupts
release the processor from idle mode.

K=2 Peripherals, such as the timer and the serial ports, are inactive.
Reset and external interrupts release the processor from idle
mode. Because interrupts are not latched in idle mode as they
are in normal device operation, they must be low for a number
of cycles to be acknowledged.

K=3 Peripherals, such as the timer and the serial ports, are inactive
and the PLL is halted. Reset and external interrupts release the
processor from idle mode. Because interrupts are not latched in
idle mode as they are in normal device operation, they must be
low for a number of cycles to be acknowledged.

Note:

This instruction is not repeatable.

Assembly Language Instructions 4-63

IDLE Iidle Until Interrupt

Words

Cycles

Classes

Example 1

Example 2

Example 3

4-64

1 word

The number of cycles needed to execute this instruction depends on the idle
period. Because the entire device is halted when K = 3, the number of cycles
cannot be specified. The minimum number of cycles is 4.

Class 36 (see page 3-72)

IDLE 1

The processor idles until a reset or unmasked interrupt occurs.

IDLE 2

The processor idles until a reset or unmasked external interrupt occurs.
IDLE 3

The processor idles until a reset or unmasked external interrupt occurs.

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

Software Interrupt INTR

INTR K

0=K=31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 12 o 1 1 1[1 1 0 K K K K K
(SP) — 1 -SSP

(PC) + 1 —-=TOS
interrupt vector specified by K — PC
1—INTM

Affects INTM and IFR

This instruction transfers program control to the interrupt vector specified by
K. This instruction allows you to use your application software to execute any
interrupt service routine. For a list of interrupts and their corresponding K val-
ue, see Appendix B.

During execution of the instruction, the PC is incremented by 1 and pushed
onto the TOS. Then, the interrupt vector specified by Kis loaded in the PC and
the interrupt service routine for this interrupt is executed. The corresponding
bit in the interrupt flag register (IFR) is cleared and interrupts are globally dis-
abled (INTM = 1). The interrupt mask register (IMR) has no effect on the INTR
instruction. INTR is executed regardless of the value of INTM.

Note:

This instruction is not repeatable.

1 word
3 cycles

Class 35 (see page 3-72)

INTR 3
Before Instruction After Instruction
PC | 0025 | PC
INTM | 0] INTM
IPTR | 01FF | IPTR
sp | 1000 | sP
Data Memory
OFFFh | 9653 | OFFFh

Assembly Language Instructions 4-65

LD Load Accumulator With Shift

Syntax

Operands

Opcode

4-66

N RN R

=
e

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

Smem, dst

Smem, TS, dst
Smem, 16, dst
Smem |, SHIFT], dst
Xmem, SHFT, dst
#K, dst

#Ik [, SHFT], dst
#lk, 16, dst

src, ASM [, dst]
src[, SHIFT], dst

For additional load instructions, see Load T/DP/ASM/ARP on page 4-70.

Smem: Single data-memory operand
Xmem: Dual data-memory operand
src, dst: A (accumulator A)

B (accumulator B)
0 <K< 255

-32768 < |k < 32 767
-16 < SHIFT =< 15
0 <= SHFT=< 15

1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[o o o 2 o o o bo|l1 A A A
2:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[o o o 2 0o 1 0o D|[1 A A A A A A
3:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[o 1 0 o o 1 0o D|1 A A A A A A
4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 1 11 11 A A A

0 0 0 1 1 0 D|lO 1 0 S H I F
5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[1 o o 12 o 1 0o D|[X X X X S H
6:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 1 1 0o 1 o o D|lK K K K K K K

Execution

Status Bits

Description

Load Accumulator With Shift LD

7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
i1 1 1 1 o0 o0 0 D|O 0O 1 0 S H F T
16-bit constant

8:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
i1 1 1 1 0 o0 0 D|O 1 1 0 O 1 0
16-bit constant

9:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 1 0o 12 s bpl1 0o o o o o 1 o]
10:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 1 o 1 s plo 1 0o s H I F T|
1: (Smem) — dst
2: (Smem) << TS — dst
3: (Smem) << 16 — dst
4: (Smem) << SHIFT — dst
5. (Xmem) << SHFT — dst
6: K—dst
7: |k << SHFT — dst
8: |k<< 16 — dst
9: (src) << ASM — dst

10: (src) << SHIFT — dst

Affected by SXM in all accumulator loads
Affected by OVM in loads with SHIFT or ASM shift
Affects OVdst (or OVsrc, when dst = src) in loads with SHIFT or ASM shift

This instruction loads the accumulator (dst, or src if dstis not specified) with
a data-memory value or an immediate value, supporting different shift quanti-
ties. Additionally, the instruction supports accumulator-to-accumulator moves
with shift.

Assembly Language Instructions 4-67

LD Load Accumulator With Shift

Words

Cycles

Classes

Example 1

4-68

Notes:
The following syntaxes are assembled as a different syntax in certain cases.
(1 Syntax 4: If SHIFT = 0, the instruction opcode is assembled as syntax 1.

[Syntax4:1f0< SHIFT < 15 and Smem indirect addressing mode is in-
cluded in Xmem, the instruction opcode is assembled as syntax 5.

[Syntax 5: If SHFT = 0, the instruction opcode is assembled as syntax 1.

[Syntax 7: If SHFT = 0 and 0 < |k < 255, the instruction opcode is
assembled as syntax 6.

Syntaxes 1, 2, 3, 5, 6, 9, and 10: 1 word
Syntaxes 4, 7, and 8: 2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntaxes 1, 2, 3, 5, 6, 9, and 10: 1 cycle
Syntaxes 4, 7, and 8: 2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntaxes 1, 2, 3, and 5: Class 3A (see page 3-5)
Syntaxes 1, 2, and 3: Class 3B (see page 3-6)
Syntax 4: Class 4A (see page 3-7)

Syntax 4: Class 4B (see page 3-8)

Syntaxes 6, 9, and 10: Class 1 (see page 3-3)
Syntaxes 7 and 8: Class 2 (see page 3-4)

LD *AR1, A
Before Instruction After Instruction
A [0000000000 | A
SXM | 0] SUN I
AR1 | 0200 | AR1
Data Memory
0200h | FED] 0200h

Example 2

Example 3

Example 4

Example 5

Example 6

LD *AR1, A
Before Instruction
A [__0000000000 |
SXM | 1]
AR1 | 0200]
Data Memory
0200h | FED]
LD *AR1, TS, B
Before Instruction
B |__0000000000 |
SXM | 1]
ARL | 0200 |
T 8]
Data Memory
0200h | FED]

LD *AR3+, 16, A

Before Instruction

A [__0000000000 |
SXM | 1]
AR3 | 0300
Data Memory
0300h | FEDG
LD #248, B
Before Instruction
B |__0000000000 |
SXM | 1]
LDA, 8B
Before Instruction
A | 007FFD 0040 |
B | 000000FFFF |
ovB | o]
SXM | 1]
Data Memory
0200h | FED]

Load Accumulator With Shift LD

After Instruction

A [_FF FFFF FEDC
SXM
AR1 0200

0200h

After Instruction

B
s [1]
AR1
T

0200h

After Instruction

A |_FF FEDC 0000
SXM
AR1 0301

0300h

After Instruction

B[00 0000 00F8
SXM

After Instruction

A
]
oe 1
S —

0200h

Assembly Language Instructions 4-69

LD Load T/DP/ASM/ARP

Syntax 1. LD Smem, T
2: LD Smem, DP
3: LD #k9,DP
4. LD #k5, ASM
5: LD #k3, ARP
6: LD Smem, ASM
For additional load instructions, see Load Accumulator With Shift on page
4-66.
Operands Smem: Single data-memory operand
0 =< k9 =511
-16 = k5 = 15
0<k3=s7
Opcode 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o 1 12 0o 0o o ol1 A A A A A A
2:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 0 o o 1 1 ofl1 A A A A A A A
3:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 0o 1 0o 1 K|K K K K K K K |
4.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 0o 1 1 0o 1l0 0o 0 K K K K |
5:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 12 o 1 0o ofl1 o 1 0 o K |
6:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o 1 2 0o 0o 1 ol1 A A A A A A A
Execution 1: (Smem) =T
2: (Smem(8-0)) — DP
3: k9 — DP
4: k5 — ASM
5: k3 — ARP
6: (Smem(4-0)) — ASM
Status Bits None

4-70

Description

Words

Cycles

Classes

Example 1

Example 2

Example 3

Example 4

Example 5

Load T/DP/ASM/ARP

LD

This instruction loads a value into T or into the DP, ASM, and ARP fields of STO
or ST1. The value loaded can be a single data-memory operand Smem or a

constant.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing

with an Smem.

Syntaxes 1, 3, 4, 5, and 6: 1 cycle
Syntax 2: 3 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing

with an Smem.

Syntaxes 1 and 6: Class 3A (see page 3-5)
Syntaxes 1 and 6: Class 3B (see page 3-6)

Syntax 2: Class 5A (see page 3-9)
Syntax 2: Class 5B (see page 3-9)

Syntaxes 3, 4, and 5: Class 1 (see
LD *AR3+, T
Before Instruction
T | 0000 |
AR3 | 0300]
Data Memory
0300h | FED]
LD *AR4, DP
Before Instruction
AR4 | 0200 |
DP | 1FF]
Data Memory
0200h | FEDG
LD #23, DP
Before Instruction
DP | 1FF |
LD 15, ASM
Before Instruction
ASM | 00 |
LD 3, ARP
Before Instruction
ARP | 0|

page 3-3)

After Instruction

T
AR3 0301
0300h

After Instruction

AR4 0200
DP

0200h

After Instruction
DP 017

After Instruction

ASM

After Instruction

ARP

Assembly Language Instructions

4-71

LD Load T/DP/ASM/ARP

Example 6 LD 0, ASM
Before Instruction
ASM | 00 |
DP | 004 |
Data Memory
0200h | FEDQ

4-72

After Instruction

ASM
DP 004

0200h

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example 1

Example 2

Load Memory-Mapped Register LDM

LDM MMR, dst

MMR: Memory-mapped register
dst: A (accumulator)
B (accumulator)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0 1 0 0 1 0 0 D | A A A A A A A

(MMR) — dst(15-0)
00 0000h — dst(39-16)

None

This instruction loads dst with the value in memory-mapped register MMR.
The nine MSBs of the effective address are cleared to 0 to designate data page
0, regardless of the current value of DP or the upper nine bits of ARx. This
instruction is not affected by the value of SXM.

1 word
1 cycle

Class 3A (see page 3-5)

LDM AR4, A
Before Instruction After Instruction
A | 0000001111 | A
AR4 | FFFF| AR4
LDM 060h, B
Before Instruction After Instruction
B [__0000000000 | B
Data Memory
0060h | 1234] 0060h

Assembly Language Instructions 4-73

LD||MAC[R]

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example 1

4-74

Load Accumulator With Parallel Multiply Accumulate With/Without Rounding

LD Xmem, dst
[| MAC[R] Ymem|, dst_]
dst: A (accumulator A)
B (accumulator B)
dst_: If dst=A, then dst_ = B; if dst=B, then dst = A

Xmem, Ymem: Dual data-memory operands

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 0 1 0 R D[X X X X Y Y Y Y

(Xmem) << 16 — dst (31-16)
If (Rounding)

Round (((Ymem) x (T)) + (dst_)) — dst_
Else

((Ymem) x (T)) + (dst_) — dst_

Affected by SXM, FRCT, and OVM
Affects OVdst_

This instruction loads the high part of dst (bits 31-16) with a 16-bit dual data-
memory operand Xmem shifted left 16-bits. In parallel, this instruction multi-
plies a dual data-memory operand Ymem by the content of T, adds the result
of the multiplication to dst_, and stores the result in dst .

If you use the R suffix, this instruction optionally rounds the result of the multi-
ply and accumulate operation by adding 215 to the result and clearing the LSBs
(15-0) to 0, and stores the result in dst_.

1 word
1 cycle

Class 7 (see page 3-12)

LD *AR4+, A
[IMAC *AR5+, B
Before Instruction After Instruction
A [__0000001000 | A
B [0000001111 | B
T | 0400] T
FRCT | 0] FRCT[0]
AR4 | 0100 | AR4
AR5 | 0200 | AR5
Data Memory
0100h | 1234 | 0100h
0200h | 4321 | 0200h

Load Accumulator With Parallel Multiply Accumulate With/Without Rounding LD||MAC[R]

Example 2 LD *AR4+, A
[IMACR *AR5+, B

Before Instruction

A [__0000001000 |
B | 0000001111 |
T | 0400 |
FRCT | of
AR4 | 0100]
AR5 | 0200]
Data Memory
0100h | 1234
0200h | 4321

After Instruction

A 00 1234 0000
B

T
FRT[0]
AR4
AR5
0100h
0200h

Assembly Language Instructions

4-75

LD|IMASI[R] Load Accumulator With Parallel Multiply Subtract With/Without Rounding

Syntax LD Xmem, dst
[| MAS[R] Ymem|, dst_]

Operands Xmem, Ymem: Dual data-memory operands
dst: A (accumulator A)
B (accumulator B)
dst_: If dst=A, then dst_ = B; if dst=B, then dst = A
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 o 1 o 1 1 R D[X X X X Y Y Y Y

Execution (Xmem) << 16 — dst (31-16)
If (Rounding)
Round ((dst_) — ((T) x (Ymem))) — dst_
Else

(dst) — ((T) X (Ymem)) — dst_

Status Bits Affected by SXM, FRCT, and OVM
Affects OVdst_

Description This instruction loads the high part of dst (bits 31-16) with a 16-bit dual data-
memory operand Xmem shifted left 16 bits. In parallel, this instruction multi-
plies a dual data-memory operand Ymem by the content of T, subtracts the re-
sult of the multiplication from dst _, and stores the result in dst .

If you use the R suffix, this instruction optionally rounds the result of the multi-
ply and subtract operation by adding 215 to the result and clearing the LSBs
(15-0) to 0, and stores the result in dst .

Words 1 word
Cycles 1 cycle
Classes Class 7 (see page 3-12)

4-76

Load Accumulator With Parallel Multiply Subtract With/Without Rounding LD||MASIR]

Example 1 LD *AR4+, A
[IMAS *AR5+, B
Before Instruction
A [__0000001000 |
B | 0000001111 |
T | 0400 |
FRCT | of
AR4 | 0100]
AR5 | 0200]
Data Memory
0100h | 1234 |
0200h | 4321 |
Example 2 LD *AR4+, A

IMASR *AR5+, B

Before Instruction

A [0000001000 |
B | 0000001111 |
T | 0400 |
FRCT | 0]
AR4 | 0100]
AR5 | 0200]
Data Memory
0100h | 1234 |
0200h | 4321 |

After Instruction

A 00 1234 0000
B

T [0400]
FRT[0]
AR4
AR5 [0201
0100h
0200h

After Instruction

A 00 1234 0000
B FF FEF4 0000

T
FRTL 0
AR4
AR5

0100h 1234
0200h 4321

Assembly Language Instructions

4-77

LDR Load Memory Value in Accumulator High With Rounding

Syntax

Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Classes

Example

4-78

LDR Smem, dst

Smem: Single data-memory operand
dst: A (accumulator A)
B (accumulator B)

15, 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o o 1 o 1 1 D|1 A A A A A A A

(Smem) << 16 + 1 << 15 — dst(31-16)
Affected by SXM

This instruction loads the data-memory value Smem shifted left 16 bits into the
high part of dst (bits 31-16). Smem s rounded by adding 215 to this value and
clearing the 15 LSBs (14-0) of the accumulator to 0. Bit 15 of the accumulator
is setto 1.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 3A (see page 3-5)
Class 3B (see page 3-6)

LDR *AR1, A
Before Instruction After Instruction
A | 0000000000 | A
sXM | 0] ssm [0
AR1 | 0200 | AR1
Data Memory
0200h | FEDJ 0200h

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example

Load Unsigned Memory Value LDU

LDU Smem, dst

Smem: Single data-memory operand
dst: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o o0 12 0o o 1 D1 A A A A A A A

(Smem) — dst(15-0)
00 0000h — dst(39-16)

None

This instruction loads the data-memory value Smem into the low part of dst
(bits 15-0). The guard bits and the high part of dst (bits 39—16) are cleared to
0. Data is then treated as an unsigned 16-bit number. There is no sign exten-
sion regardless of the status of the SXM bit.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 3A (see page 3-5)
Class 3B (see page 3-6)

LDU *AR1, A
Before Instruction After Instruction
A | 0000000000 | A
ARL | 0200] AR1
Data Memory
0200h | FED] 0200h

Assembly Language Instructions 4-79

LMS Least Mean Square

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

4-80

LMS Xmem, Ymem
Xmem, Ymem: Dual data-memory operands

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 0o o o o 1[x x X X Y Y Y Y

(A) + (Xmem) << 16 + 215 — A
(B) + (Xmem) x (Ymem) — B

Affected by SXM, FRCT, and OVM
Affects C, OVA, and OVB

This instruction executes the least mean square (LMS) algorithm. The dual
data-memory operand Xmem is shifted left 16 bits and added to accumulator
A. The resultis rounded by adding 215 to the high part of the accumulator (bits
31-16). The result is stored in accumulator A. In parallel, Xmem and Ymem
are multiplied and the result is added to accumulator B. Xmem does not over-
write T; therefore, T always contains the error value used to update coeffi-
cients.

1 word
1 cycle
Class 7 (see page 3-12)

LMS *AR3+, *AR4+

Before Instruction After Instruction
A | 0077778888 | A
B [0000000100 | B
FRCT | o] FReT 0]
AR3 | 0100] AR3
AR4 | 0200 | AR4
Data Memory
0100h | 0055 | 0100h
0200h | 00AA| 0200h

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example

Load T and Insert Delay LTD

LTD Smem
Smem: Single data-memory operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 0 o 1 1 0o o1 A A A A A A A

(Smem) =T
(Smem) - Smem + 1

None

This instruction copies the content of a single data-memory location Smem
into T and into the address following this data-memory location. When data is
copied, the content of the address location remains the same. This function
is useful for implementing a Z delay in digital signal processing applications.
This function also contains the memory delay instruction (page 4-41).

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 24A (see page 3-56)
Class 24B (see page 3-56)

LTD *AR3
Before Instruction After Instruction
T | 0000 | T
AR3 | 0100] AR3
Data Memory
0100h | 6CAC| 0100h
0101h | XXXX_ | 0101h

Assembly Language Instructions 4-81

MACIR]

Syntax

Operands

Opcode

Execution

Status Bits

Description

4-82

Multiply Accumulate With/Without Rounding

1. MACIR] Smem, src

2: MACI[R] Xmem, Ymem, src|, dst]

3: MAC #lk, src|, dst]

4: MAC Smem, #lk, src|, dst]

Smem: Single data-memory operands
Xmem, Ymem: Dual data-memory operands
src, dst: A (accumulator A)

B (accumulator B)
-32768 < |k = 32767

1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o 1 0 1 0 R s|[1 A A A A A A A
2:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 1 o R s D|[x x x x Y Y v |
3:

15 14 13 12 11 10 9 8 7 6 4 3 2 1 0

1 1 1 1 0 0 s D|lo 1 1 0 o0 1 1

16-bit constant
4.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0o 1 1 0 0 1 S D|]1 A A A A A A A

16-bit constant

1: (Smem) X (T) + (src) — src

2: (Xmem) x (Ymem) + (src) — dst

(Xmem) - T

(T) x Ik + (src) — dst

4: (Smem) X Ik + (src) — dst
(Smem) - T

w

Affected by FRCT and OVM
Affects OVdst (or OVsre, if dst is not specified)

This instruction multiplies and adds with or without rounding. The result is
stored in dstor src, as specified. For syntaxes 2 and 4, the data-memory value
after the instruction is stored in T. T is updated in the read phase.

If you use the R suffix, this instruction rounds the result of the multiply and ac-
cumulate operation by adding 215 to the result and clearing the LSBs (15-0)
to 0.

Multiply Accumulate With/Without Rounding MAC[R]

Words Syntaxes 1 and 2: 1 word
Syntaxes 3 and 4: 2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

Cycles Syntaxes 1 and 2: 1 cycle
Syntaxes 3 and 4: 2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Classes Syntax 1: Class 3A (see page 3-5)
Syntax 1: Class 3B (see page 3-6)
Syntax 2: Class 7 (see page 3-12)
Syntax 3: Class 2 (see page 3-4)
Syntax 4: Class 6A (see page 3-10)
Syntax 4: Class 6B (see page 3-11)

Example 1 MAC *AR5+, A
Before Instruction After Instruction
A [__0000001000 | A
T | 0400 | T
FRCT | o] FRCT[0]
AR5 | 0100 | AR5
Data Memory
0100h | 1234] 0100h
Example 2 MAC #345h, A, B
Before Instruction After Instruction
A | 0000001000 | A
B [__0000000000 | B
T 0400 | T
FRCT | 1] FRCT
Example 3 MAC *AR5+, #1234h, A
Before Instruction After Instruction
A [__0000001000] A
T 0000 | T
FRCT | o] FRCT[o]
AR5 | 0100 | AR5
Data Memory
0100h | 5678 | 0100h

Assembly Language Instructions 4-83

MACIR] Multiply Accumulate With/Without Rounding

Example 4 MAC *AR5+, *AR6+,A, B
Before Instruction
A [__000000 1000]
B | 0000000004 |
T 0008 |
FRCT | 1]
AR5 | 0100 |
AR6 | 0200 |
Data Memory
0100h | 5678 |
0200h | 1234]
Example 5 MACR *AR5+, A
Before Instruction
A [__0000001000 |
T | 0400 |
FRCT | o]
AR5 | 0100 |
Data Memory
0100h | 1234]
Example 6 MACR *AR5+, *AR6+,A, B
Before Instruction
A [__000000 1000]
B | 0000000004 |
T 0008 |
FRCT | 1]
AR5 | 0100 |
ARG | 0200]
Data Memory
0100h | 5678 |
0200h | 1234]

4-84

After Instruction

A
B
T
FRET 1]
AR5
ARG

0100h 5678
0200h 1234

After Instruction

A 00 0049 0000

T 0400
FrRT[_ 0]

ARS 0101

0100h 1234

After Instruction

A 00 0000 1000
B 00 0C4C 0000

T

FRCT
AR5
ARG

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Multiply by Accumulator A and Accumulate With/Without Rounding MACA[R]

1: MACAIR] Smem|, B]
2: MACAI[R] T, src|, dst]

Smem: Single data-memory operand
src, dst: A (accumulator A)
B (accumulator B)

L
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o 1 1 0o 1 R 1]

>
>
>
>

2:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 1 0o 1 s bp|

iR
o
o
o
=
o
o
py)

1. (Smem) X (A(32-16)) + (B) — B
(Smem) =T
2. (T) x (A(32-16)) + (src) — dst

Affected by FRCT and OVM
Affects OVdst (or OVsrec, if dst is not specified) and OVB in syntax 1

This instruction multiplies the high part of accumulator A (bits 32-16) by a
single data-memaory operand Smem or by the content of T, adds the product
to accumulator B (syntax 1) or to src. The result is stored in accumulator B
(syntax 1) or in dst or srcif no dstis specified. A(32-16) is used as a 17-bit
operand for the multiplier.

If you use the R suffix, this instruction rounds the result of the multiply by accu-
mulator A operation by adding 215 to the result and clearing the 16 LSBs of dst
(bits 15-0) to 0.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntaxes 1 and 2: Class 3A (see page 3-5)
Syntaxes 1 and 2: Class 3B (see page 3-6)
Syntaxes 3 and 4: Class 1 (see page 3-3)

Assembly Language Instructions 4-85

MACAI[R] Multiply by Accumulator A and Accumulate With/Without Rounding

Example 1 MACA *AR5+
Before Instruction
A [0012340000 |
B | 0000000000 |
T | 0400 |
FRCT | 0]
AR5 | 0100 |
Data Memory
0100h | 5678]
Example 2 MACAT, B, B
Before Instruction
A [0012340000 |
B | 0000020000 |
T | 0444 |
FRCT | 1]
Example 3 MACAR *AR5+, B
Before Instruction
A [0012340000 |
B [0000000000 |
T | 0400 |
FRCT | 0]
AR5 | 0100 |
Data Memory
0100h | 5678 |
Example 4 MACART, B, B
Before Instruction
A [0012340000 |
B | 0000020000 |
T | 0444 |
FRCT | 1]

4-86

After Instruction

A 00 1234 0000
B

00 0626 0060
T 5678
FReT___ 0

AR5 0101

0100h 5678

After Instruction

A 00 1234 0000
B 00 009D 4BAO

T 0444
FRCT

After Instruction

A 00 1234 0000
B 00 0626 0000

T 5678
FReT[___ 0

0100h 5678

After Instruction

A 00 1234 0000

B 00 009D 0000
T 0444

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Multiply by Program Memory and Accumulate With Delay MACD

MACD Smem, pmad, src

Smem: Single data-memory operand
src: A (accumulator A)

B (accumulator B)
0 < pmad = 65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16-bit constant

pmad — PAR
If (RC) = 0
Then
(Smem) x (Pmem addressed by PAR) + (src) — src
(Smem) =T
(Smem) - Smem + 1
(PAR) +1 — PAR
Else
(Smem) x (Pmem addressed by PAR) + (src) — src
(Smem) =T
(Smem) - Smem + 1

Affected by FRCT and OVM
Affects OVsrc

This instruction multiplies a single data-memory value Smem by a program-
memory value pmad, adds the product to src, and stores the result in src. The
data-memory value Smemis copied into T and into the next address following
the Smem address. When this instruction is repeated, the program-memory
address (in the program address register PAR) is incremented by 1. Once the
repeat pipeline is started, the instruction becomes a single-cycle instruction.
This function also contains the memory delay instruction (page 4-41).

2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

3 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 23A (see page 3-53)
Class 23B (see page 3-55)

Assembly Language Instructions 4-87

MACD Multiply by Program Memory and Accumulate With Delay

Example MACD *AR3-, COEFFS, A

Before Instruction

A [000077 0000 |

T 0008 |
FRCT | 0]
AR3 | 0100 |

Program Memory
COEFFS | 1234 |

Data Memory

0100h | 0055 |
0101h | 0066 |

4-88

After Instruction
A
T
FRET__]
AR3

COEFFS 1234

0100h 0055
0101h 0055

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Multiply by Program Memory and Accumulate MACP

MACP Smem, pmad, src

Smem: Single data-memory operand
src: A (accumulator A)

B (accumulator B)
0 < pmad = 65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 S|I A A A A A A A

16-bit constant

(pmad) — PAR

If (RC) # 0

Then
(Smem) x (Pmem addressed by PAR) + (src) — src
(Smem) =T
(PAR) + 1 — PAR

Else
(Smem) x (Pmem addressed by PAR) + (src) — src
(Smem) =T

Affected by FRCT and OVM
Affects OVsrc

This instruction multiplies a single data-memory value Smem by a program-
memory value pmad, adds the product to src, and stores the result in src. The
data-memory value Smem s copied into T. When this instruction is repeated,
the program-memory address (in the program address register PAR) is in-
cremented by 1. Once the repeat pipeline is started, the instruction becomes
a single-cycle instruction.

2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

3 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 22A (see page 3-50)
Class 22B (see page 3-52)

Assembly Language Instructions 4-89

MACP Mmultiply by Program Memory and Accumulate

Example MACP *AR3-, COEFFS, A

Before Instruction

A | 0000770000 |
T | 0008 |
FRCT | 0]
AR3 | 0100 |

Program Memory
COEFFS | 1234]

Data Memory

0100h | 0055 |
0101h | 0066 |

4-90

After Instruction

A
T
FRT[0]
AR3

COEFFS 1234

0100h 0055
0101h 0066

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

Multiply Signed by Unsigned and Accumulate MACSU

MACSU Xmem, Ymem, src

Xmem, Ymem: Dual data-memory operands
src: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 0o o 1 1 s|x x x X Y Y Y Y

unsigned(Xmem) x signed(Ymem) + (src) — src
(Xmem) =T

Affected by FRCT and OVM
Affects OVsrc

This instruction multiplies an unsigned data-memaory value Xmem by a signed
data-memory value Ymem, adds the productto src, and stores the resultin src.
The 16-bit unsigned value Xmemis stored in T. T is updated with the unsigned
value Xmem in the read phase.

The data addressed by Xmem is fed from the D bus. The data addressed by
Ymem is fed from the C bus.

1 word
1 cycle
Class 7 (see page 3-12)

MACSU *AR4+, *AR5+, A

Before Instruction After Instruction
A | 0000001000 | A
T 0008 | T
FRCT | 0] FRCT_ 0]
AR4 | 0100] AR4
AR5 | 0200] AR5
Data Memory
0100h | 8765| 0100h
0200h | 1234] 0200h

Assembly Language Instructions 4-91

MAR Modify Auxiliary Register

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example 1

4-92

MAR Smem
Smem: Single data-memory operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l[o 1 1 0o 1 1 0o 1]1 A A A A A A A

In indirect addressing mode, the auxiliary register is modified as follows:
If compatibility is on (CMPT = 1), then:
If (ARx = ARO)
AR(ARP) is modified
ARP is unchanged
Else
ARX is modified
X — ARP
Else compatibility is off (CMPT = 0)
ARXx is modified
ARP is unchanged

Affected by CMPT
Affects ARP (if CMPT = 1)

This instruction modifies the content of the selected auxiliary register (ARX) as
specified by Smem. In compatibility mode (CMPT = 1), this instruction modi-
fies the ARx content as well as the auxiliary register pointer (ARP) value.

If CMPT = 0, the auxiliary register is modified but ARP is not.
1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 1 (see page 3-3)
Class 2 (see page 3-4)

MAR *AR3+
Before Instruction After Instruction
CMPT | 0] cvpT[0
ARP | g e [0
AR3 | 0100 | AR3

Example 2

Example 3

Example 4

Example 5

Before Instruction

CMPT | 1]
ARP | 4]
AR4 | 0100]

Before Instruction

CMPT | 1]
ARP | 0]
ARO | 0008 |
AR3 | 0100 |

Before Instruction

CMPT | 1]
ARP | 0]
AR3 | 0100 |

Before Instruction

CMPT | 1]
ARP | 0]
AR3 | 0100 |

Modify Auxiliary Register MAR

After Instruction

CMPT

ARP
AR4 00FF

After Instruction

cwpT[1]
ARP
ARO
AR3

After Instruction

CMPT

ARP
AR3 0101

After Instruction

CMPT

ARP
AR3 00FF

Assembly Language Instructions

4-93

MASIR]

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

4-94

Multiply and Subtract With/Without Rounding

1. MAS[R] Smem, src
2. MASIR] Xmem, Ymem, src [, dst]

Smem: Single data-memory operand
Xmem, Ymem: Dual data-memory operands
src, dst: A (accumulator A)

B (accumulator B)

1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o 1 0o 1 1 R s|[1 A A A A A A A
2:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 1 1 R s D|lx x x x Y Y v |

1. (src)—(Smem) x (T) — src
2: (src) — (Xmem) x (Ymem) — dst
(Xmem) = T

Affected by FRCT and OVM
Affects OVdst (or OVsrec, if dst = src)

This instruction multiplies an operand by the content of T or multiplies two
operands, subtracts the result from src unless dstis specified, and stores the
result in src or dst. Xmem is loaded into T in the read phase.

If you use the R suffix, this instruction rounds the result of the multiply and sub-
tract operation by adding 215 to the result and clearing bits 15-0 of the result
to 0.

The data addressed by Xmem is fed from DB and the data addressed by
Ymemis fed from CB.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntax 1: Class 3A (see page 3-5)
Syntax 1: Class 3B (see page 3-6)
Syntax 2: Class 7 (see page 3-12)

Example 1

Example 2

Example 3

Multiply and Subtract With/Without Rounding MAS[R]

MAS *AR5+, A
Before Instruction After Instruction
A [__000000 1000 | A
T | 0400 | T
FRCT | o] FRCT[o]
AR5 | 0100 | AR5
Data Memory
0100h | 1234] 0100h
MAS *AR5+, *ARG6+, A, B
Before Instruction After Instruction
A [__0000001000 | A
B [__0000000004 | B
T | 0008 | T
FRCT | 1] FRCT
AR5 | 0100 | AR5
AR6 | 0200 | AR6
Data Memory
0100h | 5678 | 0100h
0200h | 1234] 0200h
MASR *AR5+, A
Before Instruction After Instruction
A [__000000 1000] A
T 0400 T
FRCT | 0] FRCT[0]
AR5 | 0100 | AR5
Data Memory
0100h | 1234 | 0100h

Assembly Language Instructions 4-95

MASIR] Multiply and Subtract With/Without Rounding

Example 4 MASR *AR5+, *AR6+, A, B

Before Instruction

A [0000001000 |
B | 0000000004 |
T | 0008
FRCT | 1]
AR5 | 0100 |
ARG | 0200 |
Data Memory
0100h | 5678 |
0200h | 1234]

4-96

After Instruction

A
B
T

FRET[1]

AR5
ARG

0100h 5678
0200h 1234

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Multiply by Accumulator A and Subtract With/Without Rounding MASA[R]

1. MASA Smem]|, B]
2. MASAI[R] T, src|, dst]

Smem: Single data-memory operand
src, dst: A (accumulator A)
B (accumulator B)

1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o 1 1 0o o 1 1|1 A A A A A A A
2:

15 14 13 12 11 10 9 8 6 5 4 2 10

1. (B) — (Smem) X (A(32-16)) — B
(Smem) = T
2: (src) — (T) x (A(32-16)) — dst

Affected by FRCT and OVM
Affects OVdst (or OVsrec, if dst is not specified) and OVB in syntax 1

This instruction multiplies the high part of accumulator A (bits 32—-16) by a
single data-memory operand Smem or by the content of T, subtracts the result
from accumulator B (syntax 1) or from src. The result is stored in accumulator
B (syntax 1) or in dstor src, if no dstis specified. T is updated with the Smem
value in the read phase.

If you use the R suffix in syntax 2, this instruction optionally rounds the result
of the multiply by accumulator A and subtract operation by adding 215 to the
result and clearing bits 15-0 of the result to 0.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntax 1: Class 3A (see page 3-5)
Syntax 1: Class 3B (see page 3-6)
Syntax 2: Class 1 (see page 3-3)

Assembly Language Instructions 4-97

MASA[R] Multiply by Accumulator A and Subtract With/Without Rounding

Example 1 MASA *AR5+
Before Instruction After Instruction
A [0012340000 | A
B [__000002 0000] B
T | 0400] T
FRCT | o] FReT[0
AR5 | 0100 AR5
Data Memory
0100h | 5678 0100h
Example 2 MASAT, B
Before Instruction After Instruction
A [__001234 0000] A
B | 0000020000 | B
T 0444] T
FRCT | 1] FRCT
Example 3 MASAR T, B
Before Instruction After Instruction
A [0012340000 | A
B [0000020000 | B
T 0444] T
FRCT | 1] FRCT

4-98

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example 1

Example 2

Accumulator Maximum MAX

MAX dst

dst: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2
|l 1 1 1 0 1 0 D 1 0 0 0 0 1 1 0

=
o

If (A > B)
Then
(A) — dst
0—-C
Else
(B) — dst
1—-C

Affects C

This instruction compares the content of the accumulators and stores the max-
imum value in dst. If the maximum value is in accumulator A, the carry bit, C,
is cleared to O; otherwise, it is set to 1.

1 word
1 cycle

Class 1 (see page 3-3)

MAX A
Before Instruction After Instruction
| FFF6] —10 A FFF6] -10
B | FFCH -53 B -53
c | 1] c [¢
MAX A
Before Instruction After Instruction
A [0000000055 | A 00 0000 1234
B | 0000001234 | B 00 0000 1234
| o] c

Assembly Language Instructions 4-99

MIN Accumulator Minimum

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example 1

Example 2

4-100

MIN dst

dst: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 1 1 1 0 1 0 D 1 0 0 0 0 1 1 1

If (A < B)
Then
(A) — dst
0—-C
Else
(B) — dst
1—-C

Affects C

This instruction compares the content of the accumulators and stores the mini-
mum value in dst. If the minimum value is in accumulator A, the carry bit, C,
is cleared to O; otherwise, it is set to 1.

1 word
1 cycle

Class 1 (see page 3-3)

MIN A
Before Instruction After Instruction
I FFce 53 A 53
B | FFF6] -10 B -10
c | 1] c [¢
MIN A
Before Instruction After Instruction
A [0000001234 | A
B [0000001234 | B
| o c

Syntax

Operands

Opcode

Execution

Status Bits

Description

Multiply With/Without Rounding MPY[R]

MPY[R] Smem, dst
MPY Xmem, Ymem, dst
MPY Smem, #Ik, dst
MPY #lk, dst

Smem: Single data-memory operand
Xmem, Ymem: Dual data-memory operands
dst: A (accumulator A)

B (accumulator B)
-32768 < |k < 32767

1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l[o o 1 0 o o R D|]1 A A A A A A A

2:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 0o o 1 o D]

X
x
X
x
<
<
<
<

3:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 o0 1 DI

16-bit constant

o
>
>
>
>
>
>
>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 0 D 0 1

16-bit constant

-
o
o
-
=
o

1: (T) x (Smem) — dst

2: (Xmem) x (Ymem) — dst
(Xmem) =T

3: (Smem) x lk — dst
(Smem) =T

4: (T) x |k — dst

Affected by FRCT and OVM
Affects OVdst

This instruction multiplies the content of T or a data-memory value by a data-
memory value or an immediate value, and stores the result in dst. T is loaded
with the Smem or Xmem value in the read phase.

If you use the R suffix, this instruction optionally rounds the result of the multi-
ply operation by adding 215 to the result and then clearing bits 150 to 0.

Assembly Language Instructions 4-101

MPY[R] Multiply With/Without Rounding

Words Syntaxes 1 and 2: 1 word
Syntaxes 3 and 4: 2 words

Add 1 word when using long-offset indirect addressing or absolute addressing

with an Smem.

Cycles Syntaxes 1 and 2: 1 cycle
Syntaxes 3 and 4: 2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing

with an Smem.

Classes Syntax 1: Class 3A (see page 3-5)
Syntax 1: Class 3B (see page 3-6)
Syntax 2: Class 7 (see page 3-12)
Syntax 3: Class 6A (see page 3-10)
Syntax 3: Class 6B (see page 3-11)
Syntax 4: Class 2 (see page 3-4)

Example 1 MPY 13, A

Before Instruction

A [0000000036 |
T | 0006 |
FRCT | 1]
DP | 008 |
Data Memory
040Dh | 0007 |
Example 2 MPY *AR2-, *AR4+0%, B;
Before Instruction
B | _FFFFFF FFEO |
FRCT | 0]
ARO | 0001 |
AR2 | 01FF|
AR4 | 0300 |
Data Memory
01FFh | 0010 |
0300h | 0002 |
Example 3 MPY #OFFFEh, A

Before Instruction

A 000 0000 1234
T 2000 |
FRCT | 0]

4-102

After Instruction

A 00 0000 0054

T 0006
FRCT
DP

040Dh 0007

After Instruction

B
FRCT[___ 0]
ARO
AR2
AR4 [0301}

01FFh 0010
0300h 0002

After Instruction

A FE FFFF C000

T 2000
FRRTL 0

Multiply With/Without Rounding MPY[R]

Example 4 MPYR 0, B
Before Instruction After Instruction
B [__FFFE000001] B
T | 1234] T
FRCT | o] FReT o
DP | 004] DP
Data Memory
0200h | 5678 | 0200h

Assembly Language Instructions 4-103

MPYA Multiply by Accumulator A

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example 1

4-104

1: MPYA Smem
2: MPYA dst

Smem: Single data-memory operand
dst: A (accumulator A)
B (accumulator B)

1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o 1 2 0o 0o o 1|1 A A A A A A A
2:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 12 o 1 o bp|]1 0o 0 0 1 1 o |

1. (Smem) x (A(32-16)) — B
(Smem) - T
2: (T) x (A(32-16)) — dst

Affected by FRCT and OVM
Affects OVdst (OVB in syntax 1)

This instruction multiplies the high part of accumulator A (bits 32—-16) by a
single data-memory operand Smem or by the content of T, and stores the
result in dst or accumulator B. T is updated in the read phase.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntax 1: Class 3A (see page 3-5)
Syntax 1: Class 3B (see page 3-6)
Syntax 2: Class 1 (see page 3-3)

MPYA *AR2
Before Instruction After Instruction
A [_FFE87651111 | A
B [__0000000320 | B
T 1234] T
FRCT | 0] FRCT[0]
AR2 | 0200] AR2
Data Memory
0200h | 5678] 0200h

Multiply by Accumulator A MPYA

Example 2 MPYA B
Before Instruction After Instruction
A [_FFs7651111 | A
B [0000000320 | B
T | 4567 | T
FRCT | 0] FRCT 0

Assembly Language Instructions 4-105

MPYU Multiply Unsigned

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example

4-106

MPYU Smem, dst

Smem: Single data-memory operand
dst: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0010010D|I A A A A A A A

unsigned(T) X unsigned(Smem) — dst

Affected by FRCT and OVM
Affects OVdst

This instruction multiplies the unsigned content of T by the unsigned content
of the single data-memory operand Smem, and stores the result in dst. The
multiplier acts as a signed 17 x 17-bit multiplier for this instruction with the MSB
of both operands cleared to 0. This instruction is particularly useful for comput-
ing multiple-precision products, such as multiplying two 32-bit numbers to
yield a 64-bit product.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 3A (see page 3-5)
Class 3B (see page 3-6)

MPYU *ARO—, A

Before Instruction After Instruction
A | FF 80000000 | A
T | 4000] T
FRCT | 0] FReT 0
ARO | 1000 | ARO
Data Memory
1000h | FEOQ] 1000h

Syntax
Operands

Opcode

Execution
Status Bits

Description

Words
Cycles
Classes

Example

Move Data From Data Memory to Data Memory With X, Y Addressing MVDD

MVDD Xmem, Ymem
Xmem, Ymem: Dual data-memory operands

15 14 13 12 11 10 9 8 7 6 5 4 3 2
|11100 101|XXXXYYYY

=
o

(Xmem) — Ymem
None

This instruction copies the content of the data-memory location addressed by
Xmem to the data-memory location addressed by Ymem.

1 word
1 cycle
Class 14 (see page 3-30)

MVDD *AR3+, *AR5+

Before Instruction After Instruction
AR3 | 8000 | AR3
AR5 | 0200] AR5
Data Memory
0200h | ABcO 0200h
8000h | 1234 | 8000h

Assembly Language Instructions 4-107

MVDK Move Data From Data Memory to Data Memory With Destination Addressing

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example 1

4-108

MVDK Smem, dmad

Smem: Single data-memory operand
0 < dmad = 65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 l|| A A A A A A A

16-bit constant

(dmad) — EAR

If (RC) = 0

Then
(Smem) — Dmem addressed by EAR
(EAR) +1 — EAR

Else
(Smem) — Dmem addressed by EAR

None

This instruction copies the content of a single data-memory operand Smem
to a data-memory location addressed by a 16-bit immediate value dmad (ad-
dress is in the EAB address register EAR). You can use this instruction with
the single-repeat instruction to move consecutive words in data memory (us-
ing indirect addressing). The number of words to be moved is one greater than
the number contained in the repeat counter at the beginning of the instruction.
Once the repeat pipeline is started, the instruction becomes a single-cycle
instruction.

2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 19A (see page 3-40)
Class 19B (see page 3-42)

MVDK 10, 8000h

Before Instruction After Instruction
DP | 004] DP
Data Memory
020Ah | 1234 | 020Ah
8000h | ABcO 8000h

Move Data From Data Memory to Data Memory With Destination Addressing MVDK

Example 2 MVDK *AR3—, 1000h
Before Instruction
AR3 | 01FF]
Data Memory
1000h | ABCO
O1FFh | 1234 |

After Instruction

AR3 01FE

1000h 1234
01FFh 1234

Assembly Language Instructions

4-109

MVDM Move Data From Data Memory to Memory-Mapped Register

Syntax MVDM dmad, MMR

Operands MMR: Memory-mapped register
0 < dmad =< 65535

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01110010|IAAAAAAA

16-bit constant

Execution dmad — DAR
If (RC) = 0
Then
(Dmem addressed by DAR) — MMR
(DAR) + 1 — DAR
Else
(Dmem addressed by DAR) — MMR

Status Bits None

Description This instruction copies data from a data-memory location dmad (address is in
the DAB address register DAR) to a memory-mapped register MMR. The data-
memory value is addressed with a 16-bit immediate value. Once the repeat
pipeline is started, the instruction becomes a single-cycle instruction.

Words 2 words
Cycles 2 cycles
Classes Class 19A (see page 3-40)
Example MVDM 300h, BK
Before Instruction After Instruction
BK | ABCO BK
Data Memory
0300h | 1234 0300h

4-110

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Move Data From Data Memory to Program Memory MVDP

MVDP Smem, pmad

Smem: Single data-memory operand
0 < pmad = 65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 0 1 | A A A A A A A

16-bit constant

pmad — PAR

If (RC) # 0

Then
(Smem) — Pmem addressed by PAR
(PAR) +1 — PAR

Else
(Smem) — Pmem addressed by PAR

None

This instruction copies a 16-bit single data-memory operand Smem to a pro-
gram-memory location addressed by a 16-bitimmediate value pmad. You can
use this instruction with the repeat instruction to move consecutive words in
data memory (using indirect addressing) to the contiguous program-memory
space addressed by 16-bit immediate values. The source and destination
blocks do not have to be entirely on-chip or off-chip. When used with repeat,
this instruction becomes a single-cycle instruction after the repeat pipeline
starts. In addition, when repeat is used with this instruction, interrupts are in-
hibited. Once the repeat pipeline is started, the instruction becomes a single-
cycle instruction.

2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

4 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 20A (see page 3-44)
Class 20B (see page 3-46)

Assembly Language Instructions 4-111

MVDP Move Data From Data Memory to Program Memory

Example MVDP 0, OFEOOh
Before Instruction
DP | 004]
Data Memory
0200h | 0123]
Program Memory
FEOOh | FFFF]

4-112

After Instruction

DP
0200h 0123

FEOOh 0123

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example 1

Move Data From Data Memory to Data Memory With Source Addressing MVKD

MVKD dmad, Smem

Smem: Single data-memory operand
0 < dmad = 65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 1 1 1 0 0o o0 oIl A A A A A A A

16-bit constant

dmad — DAR

If (RC) = 0

Then
(Dmem addressed by DAR) — Smem
(DAR) + 1 — DAR

Else
(Dmem addressed by DAR) — Smem

None

This instruction moves data from data memory to data memory. The source
data-memory value is addressed with a 16-bit immediate operand dmad and
is moved to Smem. You can use this instruction with the single repeat instruc-
tion to move consecutive words in data memory (using indirect addressing).
The number of words to move is one greater than the number contained in the
repeat counter at the beginning of the instruction. Once the repeat pipeline is
started, the instruction becomes a single-cycle instruction.

2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 19A (see page 3-40)
Class 19B (see page 3-42)

MVKD 300h, 0
Before Instruction After Instruction
DP | 004] DP
Data Memory
0200h | ABCO 0200h
0300h | 1234 | 0300h

Assembly Language Instructions 4-113

MVKD Move Data From Data Memory to Data Memory With Source Addressing

Example 2 MVKD 1000h, *+AR5
Before Instruction
AR5 | 01FF]
Data Memory
1000h | 1234 |
0200h | ABcO

4-114

After Instruction

AR5 0200

1000h 1234
0200h 1234

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

Move Data From Memory-Mapped Register to Data Memory MVMD

MVMD MMR, dmad

MMR: Memory-mapped register
0 < dmad =< 65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 1 l|| A A A A A A A

16-bit constant

dmad — EAR

If (RC) = 0

Then
(MMR) — Dmem addressed by EAR
(EAR) + 1 — EAR

Else
(MMR) — Dmem addressed by EAR

None

This instruction moves data from a memory-mapped register MMR to data
memory. The data-memory destination is addressed with a 16-bit immediate
value dmad. Once the repeat pipeline is started, the instruction becomes a
single-cycle instruction.

2 words
2 cycles
Class 19A (see page 3-40)

MVMD AR7, 8000h

Before Instruction After Instruction
AR7 | 1234] AR7
Data Memory
8000h | ABCO 8000h

Assembly Language Instructions 4-115

MVMM Move Data From Memory-Mapped Register to Memory-Mapped Register

Syntax

Operands

Opcode

Execution
Status Bits

Description

Words
Cycles
Classes

Example

4-116

MVMM MMRx, MMRy

MMRx: ARO-AR7, SP
MMRy: ARO-AR7, SP

15 14 13 12 11 10 9 8

6 5 4 3 2 1 0

1 1 1 0 0 1 1 1

M R X M M R Y

Register MMRX/MMRY Register MMRX/MMRY
ARO 0000 AR5 0101
AR1 0001 ARG 0110
AR2 0010 AR7 0111

AR3 0011 SP 1000
AR4 0100

(MMRX) — MMRy

None

This instruction moves the content of memory-mapped register MMRXx to the
memory-mapped register MMRYy. Only nine operands are allowed: ARO-AR7
and SP. The read operation from MMRXxis executed in the decode phase. The
write operation to MMRYy is executed in the access phase.

Note:

This instruction is not repeatable.

1 word
1 cycle

Class 1 (see page 3-3)

MVMM SP, AR1
Before Instruction
ARL | 3EFF]
sp | 0200]

After Instruction

AR1 0200
SP 0200

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Move Data From Program Memory to Data Memory MVPD

MVPD pmad, Smem

Smem: Single data-memory operand
0 < pmad = 65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 0 0 | A A A A A A A

16-bit constant

pmad — PAR

If (RC) # 0

Then
(Pmem addressed by PAR) — Smem
(PAR) +1 — PAR

Else
(Pmem addressed by PAR) — Smem

None

This instruction moves a word in program memory addressed by a 16-bit im-
mediate value pmad to a data-memory location addressed by Smem. This
instruction can be used with the repeat instruction to move consecutive words
addressed by a 16-bit immediate program address to contiguous data-
memory locations addressed by Smem. The source and destination blocks do
not have to be entirely on-chip or off-chip. When used with repeat, this instruc-
tion becomes a single-cycle instruction after the repeat pipeline starts. In addi-
tion, when repeat is used with this instruction, interrupts are inhibited. Once
the repeat pipeline is started, the instruction becomes a single-cycle instruc-
tion.

2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

3 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 21A (see page 3-47)
Class 21B (see page 3-49)

Assembly Language Instructions 4-117

MVPD Move Data From Program Memory to Data Memory

Example 1 MVPD OFEOQOh, 5
Before Instruction After Instruction
oP | 006] DP
Program Memory
FEOOh | 8A55 | FEOOh
Data Memory
0305h | FFFF] 0305h
Example 2 MVPD 2000h, *AR7-0
Before Instruction After Instruction
ARO | 0002] ARO
AR7 | OFFE] AR7
Program Memory
2000h | 1234] 2000h
Data Memory
OFFEh | ABCD OFFEh

4-118

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example 1

Example 2

Example 3

Negate Accumulator NEG

NEG src|, dst]

src, dst: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 2 1 1 0o 1 s bpl1 0 0o 0 0 1 0 0

(src) x =1 — dst

Affected by OVM
Affects C and OVdst (or OVsrc, when dst = src)

This instruction computes the 2s complement of the content of src (either A or
B) and stores the result in dst or src, if dstis not specified. This instruction
clearsthe carry bit, C, to O for all nonzero values of the accumulator. If the accu-
mulator equals 0, the carry bit is set to 1.

If the accumulator equals FF 8000 0000h, the negate operation causes an
overflow because the 2s complement of FF 8000 0000h exceeds the lower
32 bits of the accumulator. If OVM = 1, dst is assigned 00 7FFF FFFFh. If
OVM =0, dstis assigned 00 8000 0000h. The OV bit for dstis set to indicate
overflow in either case.

1 word
1 cycle
Class 1 (see page 3-3)

NEG A, B
Before Instruction After Instruction
A | FFFFFFEF228 | A
B [__0000001234 | B
OVA | 0] ooa [0]
NEG B, A
Before Instruction After Instruction
A [0000001234 | A
B [_0080000000 | B
ovB | 0] oe [o]
NEG A
Before Instruction After Instruction
A | 8000000000] A
OvA | 0] OVA
oM | 0] owm [0

Assembly Language Instructions 4-119

NEG Negate Accumulator

Example 4 NEG A
Before Instruction
A | 8000000000 |
OVA | 0]
OVM | 1]

4-120

After Instruction

A [_00 7FFF FFFF
ova
ovw

Syntax
Operands

Opcode

Execution
Status Bits

Description

Words
Cycles
Classes

Example

No Operation NOP

NOP

None

None

None

No operation is performed. Only the PC isincremented. This is useful to create
pipeline and execution delays.

1 word

1 cycle

Class 1 (see page 3-3)
NOP

No operation is performed.

Assembly Language Instructions 4-121

NORM Normalization

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example 1

Example 2

4-122

NORM src|, dst]

src, dst: A (accumulator A)
B (accumulator B)

15 14 13

11 10 9 8

[1 1 1

o 1 s D1

(src) << TS — dst

Affected by SXM and OVM

Affects OVdst (or OVsrc, when dst = src)

The signed number contained in src is normalized and the value is stored in
dstor src, if dstis not specified. Normalizing a fixed-point number separates
the number into a mantissa and an exponent by finding the magnitude of the

sign-extended number.

This instruction allows single-cycle normalization of the accumulator once the
EXP instruction, which computes the exponent of a number, has executed.
The shift value is defined by T(5-0) and coded as a 2s-complement number.
The valid shift values are —16 to 31. For the normalization, the shifter needs
the shift value (in T) in the read phase; the normalization is executed in the
execution phase.

1 word

1 cycle

Class 1 (see page 3-3)

NORM A

NORM B, A

w

Before Instruction

FF FFFF F001 |

0013 |

Before Instruction

FF FFFF F001 |

21 0AOA 0AOA |

OFF9 |

>

w

After Instruction

FF 8008 0000

0013

After Instruction

00 4214 1414
21 OAOA OAQOA
OFF9

O

Syntax

Operands

Opcode

Execution

Status Bits

Description

OR With Accumulator OR

OR Smem, src

OR #Ik[, SHFT], src|, dst]
OR #lk, 16, src|, dst]

OR src|[, SHIFT], [, dst]

src, dst : A (accumulator A)
B (accumulator B)
Smem : Single data-memory operand
0 < SHFT = 15
—-16 < SHIFT = 15
0 = |k = 65535

1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o o0 1 1 0o 1 s|i1 A A A A A A A
2:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111008D|0100$HFT

16-bit constant
3:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
i1 1 1 1 o o0 S D|O 1 1 o0 0 1 0 O
16-bit constant

4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

]
[N
N
N
o
o
(%2}
O
R
o
-
(92}
T
m
—

1: (Smem) OR (src(15-0)) — src
src(39-16) unchanged

2: |k << SHFT OR (src) — dst

3: |k << 16 OR (src) — dst

4: (src or [dst]) OR (src) << SHIFT — dst

None

This instruction ORs the src with a single data-memory operand Smem, a left-
shifted 16-bit immediate value /k, dst, or with itself. The result is stored in dst,
or src if dst is not specified. The values can be shifted as indicated by the
instruction. For a positive (left) shift, low-order bits are cleared and high-order
bits are not sign extended. For a negative (right) shift, high-order bits are not
sign extended.

Assembly Language Instructions 4-123

OR OR With Accumulator

Words

Cycles

Classes

Example 1

Example 2

4-124

Syntaxes 1 and 4: 1 word
Syntaxes 2 and 3: 2 words

Add 1 word when using long-offset indirect addressing or absolute addressing

with an Smem.

Syntaxes 1 and 4: 1 cycle
Syntaxes 2 and 3: 2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing

with an Smem.

Syntax 1: Class 3A (see page 3-5)
Syntax 1: Class 3B (see page 3-6)

Syntaxes 2 and 3: Class 2 (see page 3-4)

Syntax 4: Class 1 (see page 3-3)

OR *AR3+, A
Before Instruction
A [__0000FF 1200 |
AR3 | 0100 |
Data Memory
0100h | 1500 |
ORA, +3,B
Before Instruction
A | 0000001200 |
B [0000001800 |

After Instruction

A 00 OOFF 1700
AR3 0101

0100h 1500

After Instruction

A 00 0000 1200
B 00 0000 9800

Syntax

Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Classes

Example

OR Memory With Constant ORM

ORM #lk, Smem

Smem: Single data-memory operand
0 = |k = 65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 0 0 l|| A A A A A A A

16-bit constant

Ik OR (Smem) — Smem
None

This instruction ORs the single data-memory operand Smem with a 16-bit
constant /k, and stores the result in Smem. This instruction is a memory-to-
memory operation.

Note:

This instruction is not repeatable.

2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 18A (see page 3-39)
Class 18B (see page 3-39)

ORM 0404h, *AR4+

Before Instruction After Instruction
AR4 | 0100] AR4
Data Memory
0100h | 4444 0100h

Assembly Language Instructions 4-125

POLY Polynominal Evaluation

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example

4-126

POLY Smem
Smem : Single data-memory operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o 1 1 0o 1 1 ol1 A A A A A A A

Round (A(32-16) x (T) + (B)) = A
(Smem) << 16 — B

Affected by FRCT, OVM, and SXM
Affects OVA

This instruction shifts the content of the single data-memory operand Smem
16 bits to the left and stores the result in accumulator B. In parallel, this instruc-
tion multiplies the high part of accumulator A (bits 32—16) by the content of T,
adds the product to accumulator B, rounds the result of this operation, and
stores the final result in accumulator A. This instruction is useful for polynomial
evaluation to implement computations that take one cycle per monomial to
execute.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 3A (see page 3-5)
Class 3B (see page 3-6)

POLY *AR3+%
Before Instruction After Instruction
A [0012340000 | A
B [__0000010000 | B
T 5678 T
AR3 | 0200] AR3
Data Memory
0200h | 2000] 0200h

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example

Pop Top of Stack to Data Memory POPD

POPD Smem
Smem: Single data-memory operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o o 1 0o 1 1|1 A A A A A A A

(TOS) — Smem
(SP) + 1 - SP

None

This instruction moves the content of the data-memory location addressed by
SP to the memory location specified by Smem. SP is incremented by 1.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 17A (see page 3-36)
Class 17B (see page 3-38)

POPD 10
Before Instruction After Instruction
DP | 008] DP
sp | 0300] sp
Data Memory
0300h | 0092] 0300h
040Ah | 0055 | 040Ah

Assembly Language Instructions 4-127

POPM Pop Top of Stack to Memory-Mapped Register

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

4-128

POPM MMR
MMR: Memory-mapped register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 0o o o 1 o 1 o1 A A A A A A A

(TOS) - MMR
(SP) + 1 —SP

None

This instruction moves the content of the data-memory location addressed by
SP to the specified memory-mapped register MMR. SP is incremented by 1.

1 word
1 cycle

Class 17A (see page 3-36)

POPM AR5
Before Instruction After Instruction
AR5 | 0055 | AR5
sp | 03F0] sp
Data Memory
03FOh | 0060 | 03FOh

Syntax

Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Classes

Example

Read Data From Port PORTR

PORTR PA, Smem

Smem: Single data-memory operand
0 =< PA =65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Port address

(PA) — Smem
None

This instruction reads a 16-bit value from an external 1/0 port PA (16-bit
immediate address) into the specified data-memory location Smem. The 1S
signal goeslowtoindicate an I/O access, and the IOSTRB and READY timings
are the same as for an external data memory read.

2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

2 cycles (dependent on the external I/O operation)

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 27A (see page 3-63)
Class 27B (see page 3-63)

PORTR 05, INDAT ; INDAT .equ 60h

Before Instruction After Instruction
DP | 000] DP
I/O Memory
0005h | 7FFA| 0005h
Data Memory
0060h | 0000 | 0060h

Assembly Language Instructions 4-129

PORTW Write Data to Port

Syntax

Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Classes

Example

4-130

PORTW Smem, PA

Smem: Single data-memory operand
0 < PA =65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Port address

(Smem) — PA
None

This instruction writes a 16-bit value from the specified data-memory location
Smem to an external 1/0 port PA. The IS signal goes low to indicate an I/O
access, and the IOSTRB and READY timings are the same as for an external
data memory read.

2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

2 cycles (dependent on the external 1/0O operation)

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 28A (see page 3-64)
Class 28B (see page 3-65)

PORTW OUTDAT, 5h ; OUTDAT .equ 07h

Before Instruction After Instruction
DP | 001] DP
1/0 Memory
0005h | 0000 | 0005h
Data Memory
0087h | 7FFA| 0087h

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example

Push Data-Memory Value Onto Stack PSHD

PSHD Smem
Smem: Single data-memory operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 0 o 1 0o 1 1]1 A A A A A A A

(SP) —1-—=SP
(Smem) — TOS

None

After SP has been decremented by 1, this instruction stores the content of the
memory location Smem in the data-memory location addressed by SP. SP is
read during the decode phase; it is stored during the access phase.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 16A (see page 3-33)
Class 16B (see page 3-35)

PSHD *AR3+
Before Instruction After Instruction
AR3 | 0200] AR3
sp | 8000] sP
Data Memory
0200h | 07FF] 0200h
7FFFh | 0092 | 7FFFh

Assembly Language Instructions 4-131

PSHM Push Memory-Mapped Register Onto Stack

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

4-132

PSHM MMR
MMR: Memory-mapped register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 0 o 1 0o 1 o1 A A A A A A A
(SP) — 1—>SP

(MMR) — TOS

None

After SP has been decremented by 1, this instruction stores the content of the
memory-mapped register MMRin the data-memory location addressed by SP.

1 word
1 cycle

Class 16A (see page 3-33)

PSHM BRC
Before Instruction After Instruction
BRC | 1234 | BRC
sp | 2000 | sp
Data Memory
1FFFh | 07FF] 1FFFh

Syntax

Operands

Opcode

Execution

Status Bits

Description

Return Conditionally RC[D]

RCI[D] cond|, cond|, cond]]

The following table lists the conditions (cond operand) for this instruction.

Condition Condition

Cond Description Code Cond Description Code

BIO BIO low 00000011 [INBIO BIO high 0000 0010
C Cc=1 0000 1100 NC C=0 0000 1000
TC TC=1 0011 0000 NTC TC=0 0010 0000
AEQ (A)=0 01000101 || BEQ (B)=0 0100 1101
ANEQ (A) =0 0100 0100 BNEQ B) =0 0100 1100
AGT (A) >0 0100 0110 BGT B) >0 0100 1110
AGEQ A =0 0100 0010 BGEQ B)=0 0100 1010
ALT A) <O 0100 0011 BLT B) <0 0100 1011
ALEQ (A)=<o0 0100 0111 BLEQ B)=o0 0100 1111
AOV A overflow 0111 0000 BOV B overflow 0111 1000
ANOV A no overflow 0110 0000 BNOV B no overflow 0110 1000
UNC Unconditional 0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 1 0

| 1 1 1 1 1 1 Z 0 C C C C c C c C

If (cond(s))

Then
(TOS) — PC
(SP)+1—SP

Else
(PC)+1—-PC

None

If the conditions given by cond are met, this instruction replaces the PC with
the data-memory value from the TOS and increments the SP by 1. If the condi-

tions are not met, this instruction just increments the PC by 1.

If the return is delayed (specified by the D suffix), the two 1-word instructions
or one 2-word instruction following this instruction is fetched and executed.
The two instruction words following this instruction have no effect on the condi-

tion(s) being tested.

Assembly Language Instructions 4-133

RC[D] Return Conditionally

This instruction tests multiple conditions before passing control to another sec-
tion of the program. It can test the conditions individually or in combination with
other conditions. You can combine conditions from only one group as follows:

Group 1l You can select up to two conditions. Each of these conditions
must be from a different category (category A or B); you cannot
have two conditions from the same category. For example, you
cantest EQ and OV at the same time but you cannot test GT and
NEQ at the same time. The accumulator must be the same for
both conditions; you cannot test conditions for both accumula-
tors with the same instruction. For example, you can test AGT
and AQV at the same time, but you cannot test AGT and BOV
at the same time.

Group 2 You can select up to three conditions. Each of these conditions
must be from a different category (category A, B, or C); you can-
not have two conditions from the same category. For example,
you cantest TC, C, and BIO at the same time but you cannot test
NTC, C, and NC at the same time.

Conditions for This Instruction

Group 1 Group 2
Category A Category B Category A Category B Category C
EQ ov TC C BIO
NEQ NOV NTC NC NBIO
LT
LEQ
GT
GEQ
' Note: '

This instruction is not repeatable.

Words 1 word

Cycles 5 cycles (true condition)
3 cycles (false condition)
3 cycles (delayed)

Classes Class 32 (see page 3-70)

4-134

Example

RC AGEQ, ANOV

Return Conditionally RC[D]

;1 eturn is executed if the accumulator A

; contents are positive and the OVA bit

;is a zero

Before Instruction

PC | 0807 |
OVA | 0]
sp | 0308 |

Data Memory
0308h | 2002 |

After Instruction

PC 2002

SV E—
SP 0309

0308h 2002

Assembly Language Instructions 4-135

READA Read Program Memory Addressed by Accumulator A and Store in Data Memory

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

4-136

READA Smem
Smem: Single data-memory operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|01111110|IAAAAAAA

A — PAR
If (RC)=0)
(Pmem (addressed by PAR)) — Smem
(PAR) +1 — PAR
(RC)-1—-RC
Else
(Pmem (addressed by PAR)) — Smem

None

This instruction transfers a word from a program-memory location specified by
accumulator Ato a data-memory location specified by Smem. Once the repeat
pipeline is started, the instruction becomes a single-cycle instruction. Accumu-
lator A defines the program-memory location according to the specific device,
as follows:

'541-'546 '548, '549

A(15-0) A(22-0)

This instruction can be used with the repeat instruction to move consecutive
words (starting with the address specified in accumulator A) to a contiguous
data-memory space addressed using indirect addressing. Source and des-
tination blocks do not need to be entirely on-chip or off-chip.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

5 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 25A (see page 3-57)
Class 25B (see page 3-59)

Read Program Memory Addressed by Accumulator A and Store in Data Memory READA

Example READA 6
Before Instruction
A | 0000000023 |
DP | 004]
Program Memory
0023h | 0306 |
Data Memory
0206h | 0075

After Instruction

A [[000000 0023
pp [004]

0023h 0306
0206h 0306

Assembly Language Instructions

4-137

RESET Software Reset

Syntax RESET
Operands None
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 o0 1 1 1|1 1 1 0 0 0 0 0

Execution These fields of PMST, STO, and ST1 are loaded with the values shown:
(IPTR) << 7 — PC 0 — OVA 0— OVB
1—-C 1—-TC 0 — ARP
0— DP 1 — SXM 0 — ASM
0 — BRAF 0 — HM 1— XF
0— C16 0 — FRCT 0 — CMPT
0— CPL 1—INTM 0—IFR
0 — OVM
Status Bits The status bits affected are listed in the execution section.
Description This instruction performs a nonmaskable software reset that can be used at

any time to put the '54x into a known state. When the reset instruction is
executed, the operations listed in the execution section occur. The MP/MC pin
is not sampled during this software reset. The initialization of IPTR and the pe-
ripheral registers is different from the initialization using RS. This instruction
is not affected by INTM; however, it sets INTM to 1 to disable interrupts.

Note:

This instruction is not repeatable.

Words 1 word
Cycles 3 cycles
Classes Class 35 (see page 3-72)
Example RESET
Before Instruction After Instruction
pPCc | 0025 PC 0080
INTM | 0] INTM
PTR | 1 PTR

4-138

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example

Return RET[D]

RET [D]
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 1 1 1 1 1 Z 0 0 0 0 0 0 0 0 0

(TOS) — PC
(SP) + 1 —>SP

None

This instruction replaces the value in the PC with the 16-bit value from the
TOS. The SP is incremented by 1. If the return is delayed (specified by the D
suffix), the two 1-word instructions or one 2-word instruction following this
instruction is fetched and executed.

Note:

This instruction is not repeatable.

1 word

5 cycles
3 cycles (delayed)

Class 32 (see page 3-70)

RET
Before Instruction After Instruction
PC | 2112 | PC
sp | 0300] sp
Data Memory
0300h | 1000 | 0300h

Assembly Language Instructions 4-139

RETE[D] Enable Interrupts and Return From Interrupt

Syntax RETE [D]
Operands None
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| 1 1 1 1 0 1 z 0 1 1 1 0 1 0 1 1

Execution (TOS) — PC
(SP) + 1 —=SP
0 — INTM
Status Bits Affects INTM
Description This instruction replaces the value in the PC with the 16-bit value from the

TOS. Execution continues from this address. The SP is incremented by 1. This
instruction automatically clears the interrupt mask bit (INTM) in ST1. (Clearing
this bit enables interrupts.) If the return is delayed (specified by the D suffix),
the two 1-word instructions or one 2-word instruction following this instruction
is fetched and executed.

Note:

This instruction is not repeatable.

Words 1 word

Cycles 5 cycles
3 cycles (delayed)

Classes Class 32 (see page 3-70)
Example RETE
Before Instruction After Instruction
PC | o1cs| PC
sp | 2001 | sp
ST1 | XCxx | ST1
Data Memory
2001h | 0110] 2001h

4-140

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example

Enable Interrupts and Fast Return From Interrupt RETF[D]

RETF [D]
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 1 1 1 0 1 Z 0 1 0 0 1 1 0 1 1

(RTN) — PC
(SP) + 1 - SP
0 — INTM

Affects INTM

This instruction replaces the value in the PC with the 16-bit value in RTN. RTN
holds the address to which the interrupt service routine should return. RTN is
loaded into the PC during the return instead of reading the PC from the stack.
The SPisincremented by 1. This instruction automatically clears the interrupt
mask bit (INTM) in ST1. (Clearing this bit enables interrupts.) If the return is
delayed (specified by the D suffix), the two 1-word instructions or one 2-word
instruction following this instruction is fetched and executed.

Note:

You can use this instruction only if no call is performed during the interrupt
service routine and no other interrupt routine is taken.

This instruction is not repeatable.

1 word

3 cycles
1 cycle (delayed)

Class 33 (see page 3-71)

RETF
Before Instruction After Instruction
PC | o1cs| PC
sp | 2001] sP
ST1 | xCxx | ST1
Data Memory
2001h | 0110] 2001h

Assembly Language Instructions 4-141

RND Round Accumulator

Syntax

Operands

Opcode

Execution
Status Bits

Description

Words
Cycles

Classes

Example 1

Example 2

4-142

RND src|, dst]

src, dst: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 1 1 101SD|100 1 1 1 1 1

(src) + 8000h — dst
Affected by OVM

This instruction rounds the content of src (either A or B) by adding 215. The
rounded value is stored in dst or src, if dstis not specified.

Note:

This instruction is not repeatable.

1 word
1 cycle

Class 1 (see page 3-3)

RND A, B
Before Instruction After Instruction
A |_FF FFFF FFFF | A
B [__0000000001] B
owM | o] ow[0
RND A
Before Instruction After Instruction
A |__00 7FFF FFFF_] A
owM | 1] oM

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

Rotate Accumulator Left ROL

ROL src

src: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|l 1 1 1 0 1 0 S 1 0 0 1 0 0 0 1

(C) — src(0)
(src(30-0)) — src(31-1)
(src(31)) = C

0 — src(39-32)

Affected by C
Affects C

This instruction rotates each bit of src left 1 bit. The value of the carry bit, C,
before the execution of the instruction is shifted into the LSB of src. Then, the
MSB of srcis shifted into C. The guard bits of src are cleared.

1 word
1 cycle

Class 1 (see page 3-3)

ROL A
Before Instruction After Instruction
A [__5FB0001234 | A
c | g c

Assembly Language Instructions 4-143

ROLTC Rotate Accumulator Left Using TC

Syntax ROLTC src

Operands Src: A (accumulator A)
B (accumulator B)

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 1 1 1 1 0 1 0 S 1 0 0 1 0 0 1 0

Execution (TC) — src(0)
(src(30-0)) — src(31-1)
(src(31)) = C
0 — src(39-32)

Status Bits Affects C
Affected by TC

Description This instruction rotates each bit of srcleft 1 bit. The value of the TC bit before
the execution of the instruction is shifted into the LSB of src. Then, the MSB
of srcis shifted into C. The guard bits of src are cleared.

Words 1 word

Cycles 1 cycle

Classes Class 1 (see page 3-3)

Example ROLTC A

Before Instruction After Instruction

A | 810005555 | A 00 8000 AAAB
c | 4 c
TC | 1] TC

4-144

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

Rotate Accumulator Right ROR

ROR src

src: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|l 1 1 1 0 1 0 S 1 0 0 1 0 0 0 0

(C) — sre(31)
(src(31-1)) — src(30-0)
(src(0)) = C

0 — src(39-32)

Affects C
Affected by C

This instruction rotates each bit of srcright 1 bit. The value of the carry bit, C,
before the execution of the instruction is shifted into the MSB of src. Then, the
LSB of srcis shifted into C. The guard bits of src are cleared.

1 word
1 cycle

Class 1 (see page 3-3)

ROR A
Before Instruction After Instruction
A [_7FB0001235 | A
c | g c

Assembly Language Instructions 4-145

RPT Repeat Next Instruction

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

4-146

1: RPT Smem

2: RPT #K

3: RPT #lk

Smem: Single data-memory operand
0 =<K= 255

0 =< Ik = 65535

1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 0o o o0 1 11 A A A A A
2:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 12 1 0o 1 1 0o o[K K K K K K K K]
3:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 o0 o0flo 1 1 1 0 0 0 O

16-bit constant

1. (Smem)— RC

2. K—=RC
3. [k—=RC
None

The repeat counter (RC) is loaded with the number of iterations when this
instruction is executed. The number of iterations (n) is given in a 16-bit single
data-memory operand Smem or an 8- or 16-bit constant, K or Ik, respectively.
The instruction following the repeat instruction is repeated n + 1 times. You
cannot access RC while it decrements.

Note:

This instruction is not repeatable.

Syntaxes 1 and 2: 1 word
Syntax 3: 2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntax 1: 3 cycles
Syntax 2: 1 cycle
Syntax 3: 2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Classes

Example 1

Example 2

Example 3

Syntax 1: Class 5A (see page 3-9)
Syntax 1: Class 5B (see page 3-9)
Syntax 2: Class 1 (see page 3-3)
Syntax 3: Class 2 (see page 3-4)

RPT DAT127 ; DAT127 .EQU OFFF

Before Instruction

RC | 0]

DP | 031]
Data Memory

OFFFh | 000C]|

RPT #2 ; Repeat next instruction 3 times

Before Instruction

RC | 0]

RPT #1111h ; Repeat next instruction 4370 times

Before Instruction

RC | 0]

Repeat Next Instruction RPT

After Instruction
RC 000C
DP

OFFFh 0ooC

After Instruction

RC 0002

After Instruction

RC 1111

Assembly Language Instructions 4-147

RPTB[D]

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

4-148

Block Repeat

RPTB [D] pmad
0 < pmad = 65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 z 0 0 1 1 1 0 0 1 0

16-bit constant

1 — BRAF
If (delayed) then
(PC) +4 — RSA
Else
(PC) +2 - RSA
pmad — REA

Affects BRAF

This instruction repeats a block of instructions the number of times specified
by the memory-mapped block-repeat counter (BRC). BRC must be loaded be-
fore the execution of this instruction. When this instruction is executed, the
block-repeat start address register (RSA) is loaded with PC + 2 (or PC + 4 if
you use the delayed instruction) and the block-repeat end address register
(REA) is loaded with the program-memory address (pmad).

This instructionis interruptible. Single-instruction repeat loops can be included
as part of block repeat blocks. To nest block repeat instructions you must en-
sure that:

(10 BRC, RSA, and REA are appropriately saved and restored.
[The block-repeat active flag (BRAF) is properly set.

In a delayed block repeat (specified by the D suffix), the two 1-word instruc-
tions or the one 2-word instruction following this instruction is fetched and
executed.

Note:
Block repeat can be deactivated by clearing the BRAF bit.

This instruction is not repeatable.

2 words

4 cycles
2 cycles (delayed)

Class 29A (see page 3-66)

Example 1 ST #99, BRC
RPTB end_block — 1

; end_block = Bottom of Block
Before Instruction

pc | 1000
BRC | 1234 |
RSA | 5678 |
REA | 9AB]
Example 2 ST #99, BRC ;execute the block 100 times

RPTBD end_block — 1
MVDM POINTER, AR1
; initialize pointer
; end_block ; Bottom of Block
Before Instruction

pc | 1000
BRC | 1234 |
RSA | 5678 |
REA | 9AB]

Block Repeat RPTB|[D]

After Instruction

PC
BRC
RSA
REA

After Instruction

PC
BRC
RSA
REA

Assembly Language Instructions

4-149

RPTZ Repeat Next Instruction And Clear Accumulator

Syntax RPTZ dst, #lk

Operands dst: A (accumulator A)
B (accumulator B)
0 < Ik = 65535

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 0 D 0 1 1 1 0 0 0 1

16-bit constant

Execution 0 — dst
Ik - RC
Status Bits None
Description This instruction clears dst and repeats the next instruction n + 1 times, where

n is the value in the repeat counter (RC). The RC value is obtained from the
16-bit constant /k.

Words 2 words
Cycles 2 cycles
Classes Class 2 (see page 3-4)
Example RPTZ A, 1023 ; Repeat the next instruction 1024 times
STL A, *AR2+
Before Instruction After Instruction
A | oF FE00 8000 | A 00 0000 0000
RC | 5000 R

4-150

Syntax

Operands

Opcode

Execution
Status Bits

Description

Words
Cycles
Classes

Example 1

Example 2

Reset Status Register Bit RSBX

RSBX N, SBIT

0 < SBIT = 15
N=0orl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 1 N 0 1 0 1 1 S B | T

0 — STN(SBIT)
None

This instruction clears the specified bit in status register O or 1 to a logic 0. N
designates the status register to modify and SBIT specifies the bit to be modi-
fied. The name of a field in a status register can be used as an operand instead
of the N and SBIT operands (see Examplel).

Note:

This instruction is not repeatable.

1 word
1 cycle
Class 1 (see page 3-3)

RSBX SXM; SXM means: n=1 and SBIT=8

Before Instruction After Instruction
ST1 | 35CD) ST1 34CD)
RSBX 1,8
Before Instruction After Instruction
ST1 | 35CD) ST1 34CD)

Assembly Language Instructions 4-151

SACCD store Accumulator Conditionally

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles

Classes

4-152

SACCD src, Xmem, cond
Src: A (accumulator A)
B (accumulator B)

Xmem: Dual data-memory operand

The following table lists the conditions (cond operand) for this instruction.

Condition Condition
Cond Description Code Cond Description Code
AEQ (A)=0 0101 BEQ (B)=0 1101
ANEQ (A) =0 0100 BNEQ (B) = 0 1100
AGT (A) > 0 0110 BGT (B) >0 1110
AGEQ (A) =0 0010 BGEQ (B) =0 1010
ALT (A) < 0 0011 BLT (B) <0 1011
ALEQ (A) <0 0111 BLEQ (B) <0 1111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o 1 1 1 1 s|[x x x x ¢ O N D

If (cond)
Then

(src) << (ASM — 16) — Xmem
Else

(Xmem) — (Xmem)

Affected by ASM and SXM

If the condition is true, this instruction stores srcleft-shifted by (ASM —16). The
shift value is in the memory location designated by Xmem. If the condition is
false, the instruction reads Xmem and writes the value in Xmem back to the
same address; thus, Xmem remains the same. Regardless of the condition,
Xmem is always read and updated.

1 word

1 cycle

Class 15 (see page 3-32)

Store Accumulator Conditionally SACCD

Example SACCD A, *AR3+0%, ALT
Before Instruction After Instruction
A |__FFFE004321 | A
ASM | o] ASM
ARO | 0002 | ARO
AR3 | 0202] AR3
Data Memory

0202h | 0101 | 0202h

Assembly Language Instructions 4-153

SAT Saturate Accumulator

Syntax

Operands

Opcode

Execution
Status Bits

Description

Words
Cycles
Classes

Example 1

Example 2

Example 3

4-154

SAT src

Src: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 1 0 S 1 0 0 0 0 0 1 1

Saturate (src) — src
Affects OVsrc

Regardless of the OVM value, this instruction allows the saturation of the con-
tent of src on 32 bits.

1 word
1 cycle

Class 1 (see page 3-3)

SATB
Before Instruction After Instruction
B | 7123456789 | B 00 7FFF FFFF
ove | 7 ove
SAT A
Before Instruction After Instruction
A | F812345678 | A FF 8000 0000
ova | 1 ova
SATB

Before Instruction

After Instruction

B [0000123456 | B
OVB | x] o[0

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Shift Accumulator Arithmetically SFTA

SFTA src, SHIFT [, dst]

src, dst A (accumulator A)
B (accumulator B)
-16 < SHIFT < 15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 1 1 12 o 1 s bplo 1 1 s H I F T
If SHIFT <0
Then

(src((-SHIFT) -1)) = C

(src(39-0)) << SHIFT — dst

IfSXM=1

Then
(src(39)) — dst(39—(39 + (SHIFT + 1))) [or src(39—(39 + (SHIFT + 1)),
if dst is not specified]

Else
0 — dst(39—(39 + (SHIFT + 1))) [or src(39—(39 + (SHIFT + 1))),
if dst is not specified]

Else

(src(39 — SHIFT)) = C

(src) << SHIFT — dst

0 — dst((SHIFT — 1)-0) [or src((SHIFT — 1)-0), if dst is not specified]

Affected by SXM and OVM
Affects C and OVdst (or OVsrc, if dst = src)

This instruction arithmetically shifts src and stores the resultin dstor src, if dst
is not specified. The execution of the instruction depends on the SHIFT value:

(1 Ifthe SHIFT value is less than 0, the following occurs:

1) src((-SHIFT) — 1) is copied into the carry bit, C.

2) If SXMis 1, the instruction executes an arithmetic right shift and the
MSB of the srcis shifted into dsf(39—(39 + (SHIFT + 1))).

3) IfSXMis 0, 0 is written into dst(39—(39 + (SHIFT + 1))).

(g Ifthe SHIFT value is greater than 0, the following occurs:

1) src(39 — SHIFT) is copied into the carry bit, C.
2) An arithmetic left shift is produced by the instruction.
3) 0 is written into dsf{((SHIFT — 1)-0).

1 word

1 cycle

Assembly Language Instructions 4-155

SFTA Shift Accumulator Arithmetically

Classes Class 1 (see page 3-3)

Example 1 SFTAA,-5,B

Before Instruction

A | FF87650055 |

B | 0043211234 |

c | x|

SXM | 1]

Example 2 SFTA B, +5
Before Instruction

B | 80AA001234 |

c | 0]

ovM | 0]

SXM | 0]

4-156

After Instruction

A [Frares ooss]
e [Frrcsznz]
S —

N —

After Instruction

B
c
owm [
S E—

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

Shift Accumulator Conditionally SFTC

SFTC src

src: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|l 1 1 1 0 1 0 S 1 0 0 1 0 1 0 0

If (src) =0
Then

1-TC
Else

If (src(31)) XOR (src(30)) =0

Then (two significant sign bits)
0—-TC
(src) << 1 —src

Else (only one sign bit)
1—-TC

Affects TC

If src has two significant sign bits, this instruction shifts the 32-bit srcleft by 1
bit. If there are two sign bits, the test control (TC) bit is cleared to 0; otherwise,
itis setto 1.

1 word
1 cycle

Class 1 (see page 3-3)

SFTC A
Before Instruction After Instruction
A |__FFFFFFF001 | A
c | 1 € [9

Assembly Language Instructions 4-157

SFTL Shift Accumulator Logically

Syntax SFTL src, SHIFT [, dst]

Operands src, dst: A (accumulator A)
B (accumulator B)
-16 < SHIFT = 15

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 S D|1 1 1 S H I F T
Execution If SHIFT <0
Then

src((-SHIFT)-1) = C
src(31-0) << SHIFT — dst
0 — dst(39—(31 + (SHIFT + 1)))
If SHIFT =0
Then
0—-C
Else
src(31 — (SHIFT-1)) = C
src((31 — SHIFT)-0) << SHIFT — dst
0 — dst((SHIFT — 1)-0) [or src((SHIFT — 1)-0), if dst is not specified]
0 — dst(39-32) [or src(39-32), if dst is not specified]

Status Bits Affects C

Description This instruction logically shifts src and stores the result in dst or src, if dstis
not specified. The guard bits of dst or src, if dst is not specified, are also
cleared. The execution of the instruction depends on the SHIFT value:

[Ifthe SHIFT value is less than 0, the following occurs:

1) src((-SHIFT) — 1) is copied into the carry bit, C.
2) Alogical right shift is produced by the instruction.
3) O is written into dst(39—(31 + (SHIFT + 1))).

(O Ifthe SHIFT value is greater than 0, the following occurs:

1) src(31 - (SHIFT — 1)) is copied into the carry bit, C.
2) A logical left shift is produced by the instruction.
3) 0is written into ds{{((SHIFT — 1)-0).

Words 1 word
Cycles 1 cycle
Classes Class 1 (see page 3-3)

4-158

Shift Accumulator Logically SFTL

Example 1 SFTLA, -5, B
Before Instruction After Instruction
A [_FF 87650055 | A
B [__FF 80000000 | B
| o]
Example 2 SFTL B, +5
Before Instruction After Instruction
B [80AA001234 | B
| 9

Assembly Language Instructions 4-159

SQDST Square Distance

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

4-160

SQDST Xmem, Ymem
Xmem, Ymem: Dual data-memory operands

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 0o o o 1 of[x x x X Y Y Y Y

(A(32-16)) x (A(32-16)) +(B) —B
((Xmem) — (Ymem)) << 16 — A

Affected by OVM, FRCT, and SXM
Affects C, OVA, and OVB

Used in repeat single mode, this instruction computes the square of the dis-
tance between two vectors. The high part of accumulator A (bits 32—-16) is
squared, the product is added to accumulator B, and the result is stored in ac-
cumulator B. Ymemis subtracted from Xmem, the difference is shifted 16 bits
left, and the result is stored in accumulator A. The value to be squared
(A(32-16)) is the value of the accumulator before the subtraction is executed
by this instruction.

1 word
1 cycle
Class 7 (see page 3-12)

SQDST *AR3+, AR4+

Before Instruction After Instruction
A | FFABCD 0000 | A
B [0000000000 | B
FRCT | 0] FReT 0
AR3 | 0100] AR3
AR4 | 0200 AR4
Data Memory
0100h | 0055 | 0100h
0200h | 00AA| 0200h

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example 1

Square SQUR

1. SQUR Smem, dst
2. SQUR A, dst

Smem: Single data-memory operand
dst: A (accumulator A)
B (accumulator B)

1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o 1 0o o 1 1 D[1 A A A A Al
2:

15 14 13 12 11 10 9 8 7 6 5 4 1 0
[1 1 1 1 o 1 0o bp[1 0o 0o 0 1 1 0 1|
1: (Smem) — T

(Smem) x (Smem) — dst
2: (A(32-16)) x (A(32-16)) — dst

Affected by OVM and FRCT
Affects OVsrc

This instruction squares a single data-memory operand Smem or the high part
of accumulator A (bits 32—16) and stores the resultin dst. T is unaffected when
accumulator A is used; otherwise, Smemis stored in T.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntax 1: Class 3A (see page 3-5)
Syntax 1: Class 3B (see page 3-6)
Syntax 2: Class 1 (see page 3-3)

SQUR 30, B
Before Instruction After Instruction
B |__00000001F4 | B
T 0003 | T
FRCT | 0] FReT_ 0
0P | 005 DP
Data Memory
031Eh | 000F | 031Eh

Assembly Language Instructions 4-161

SQUR square

Example 2 SQURA, B
Before Instruction After Instruction
A [_00 000F 0000] A
B | 0001010101 | B
FRCT | 1] FRCT

4-162

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example 1

Example 2

Square and Accumulate SQURA

SQURA Smem, src

Smem: Single data-memory operand
src: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o 1 12 1 0 o s|1 A A A A A A A

(Smem) =T
(Smem) X (Smem) + (src) — src

Affected by OVM and FRCT
Affects OVsrc

This instruction stores the data-memory value Smem in T, then it squares
Smem and adds the product to src. The result is stored in src.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 3A (see page 3-5)
Class 3B (see page 3-6)

SQURA 30, B
Before Instruction After Instruction
B [0003200000 | B
T | 0003 | T
FRCT | 0] FRCT 0]
oP | 006] DP

Data Memory

031Eh | 000F] 031Eh 000F

SQURA *AR3+, A

Before Instruction After Instruction
A [__00000001F4 | A
T 0003 T
FRCT | 0] FReT o
AR3 | 031E] AR3
Data Memory
031Eh | 000F] 031Eh

Assembly Language Instructions 4-163

SQURS Ssquare and Subtract

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example 1

Example 2

4-164

SQURS Smem, src

Smem: Single data-memory operand
src: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|OOlllOlS|IAAAAAAA

(Smem) =T
(src) — (Smem) X (Smem) — src

Affected by OVM and FRCT
Affects OVsrc

This instruction stores the data-memory value Smem in T, then it squares
Smem and subtracts the product from src. The result is stored in src.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 3A (see page 3-5)
Class 3B (see page 3-6)

SQURS 9, A
Before Instruction After Instruction
A | 00014B5DBO | A
T 8765] T
FRCT | o] FReT 0
DP | 006] DP
Data Memory
0309h | 1234 | 0309h
SQURS *AR3, B
Before Instruction After Instruction
B [_00014B5DBO | B
L 8765] T
FRCT | o] FReT[0
AR3 | 0309 | AR3
Data Memory
0309h | 1234] 0309h

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

Store Block Repeat Counter Conditionally SRCCD

SRCCD Xmem, cond

Xmem:

Dual data-memory operand

The following table lists the conditions (cond operand) for this instruction.

Condition Condition

Cond Description Code Cond Description Code
AEQ (A)=0 0101 BEQ (B)=0 1101
ANEQ (A) =0 0100 BNEQ B) =0 1100
AGT (A) >0 0110 BGT (B) > 0 1110
AGEQ (A)=0 0010 BGEQ B)=0 1010
ALT (A) <0 0011 BLT (B) <0 1011
ALEQ (A) <0 0111 BLEQ (B) <0 1111

15 14 13 12 11 10 9 8 7 6 5 4 3 1 0
[1 0o o 12 1 1 o 1]x x x x|c N D
If (cond)
Then

(BRC) — Xmem

Else

(Xmem) — Xmem

None

If the condition is true, this instruction stores the content of the block-repeat
counter (BRC) in Xmem. If the condition is false, the instruction reads Xmem
and writes the value in Xmem back to the same address; thus, Xmemremains
the same. Regardless of the condition, Xmem is always read and updated.

1 word
1 cycle
Class 15 (see page 3-32)

SRCCD *AR5—, AGT
Before Instruction

A |00 70FF FFFF]
AR5 | 0202 |
BRC | 4321 |

Data Memory
0202h | 1234 |

After Instruction

A [_00 70FF FFFF

AR5 0201
BRC 4321

0202h 4321

Assembly Language Instructions 4-165

SSBX Set Status Register Bit

Syntax SSBX N, SBIT
Operands 0 < SBIT = 15
N=0orl
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 1 N 1121 0 1 1 S B I T
Execution 1 — STN(SBIT)
Status Bits None
Description This instruction sets the specified bit in status register 0 or 1 to a logic 1. Ndes-

ignates the status register to modify and SBIT specifies the bit to be modified.
The name of a field in a status register can be used as an operand instead of
the N and SBIT operands (see Example 1).

Note:

This instruction is not repeatable.

Words 1 word
Cycles 1 cycle
Classes Class 1 (see page 3-3)
Example 1 SSBX SXM ; SXM means: N=1, SBIT=8
Before Instruction After Instruction
sT1 | 34cD| ST1
Example 2 SSBX 1,8
Before Instruction After Instruction
sT1 | 34cD| ST1

4-166

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Store T, TRN, or Immediate Value Into Memory ST

1. ST T, Smem
2: ST TRN, Smem
3. ST #lk, Smem

Smem: Single data-memory operand
-32768 < |k = 32767

1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 0o o o 1 1 0o of1 A A A A A A A
2:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o o 1 1 0o 1[1 A A A A A A A
3:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 o1 A

16-bit constant

o
[N
[N
[N
o
[N
>
>
>
>

1: (T) — Smem
2. (TRN) — Smem
3: Ik —= Smem

None

This instruction stores the content of T, the transition register (TRN), or a 16-bit
constant /k in data-memory location Smem.

Syntaxes 1 and 2: 1 word
Syntax 3: 2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntaxes 1 and 2: 1 cycle
Syntax 3: 2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntaxes 1 and 2: Class 10A (see page 3-22)
Syntaxes 1 and 2: Class 10B (see page 3-23)
Syntax 3: Class 12A (see page 3-26)
Syntax 3: Class 12B (see page 3-27)

Assembly Language Instructions 4-167

ST Store T, TRN, or Immediate Value Into Memory

Example 1 ST FFFFh, O
Before Instruction
DP | 004]
Data Memory
0200h | 0101 |
Example 2 STTRN, 5
Before Instruction
DP | 004]
TRN | 1234]
Data Memory
0205h | 0030
Example 3 ST T, *AR7—
Before Instruction
T | 4210
AR7 | 0321 |
Data Memory
0321h | 1200 |

4-168

After Instruction

op [004]

0200h FFFF

After Instruction

DP
TRN 1234

0205h 1234

After Instruction

T 4210
AR7 0320

0321h 4210

Syntax

Operands

Opcode

Execution

Status Bits

Description

Store Accumulator High Into Memory STH

1: STH src, Smem
2: STH src, ASM, Smem
3: STH src, SHFT, Xmem
4: STH src|[, SHIFT], Smem
src: A (accumulator A)
B (accumulator B)
Smem: Single data-memory operand
Xmem: Dual data-memory operand

0 = SHFT = 15
-16 < SHIFT = 15

1:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0O O O O0 1 s | A A A A A A A

2:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 O O o 1 1 s | A A A A A A A

3:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 o0 1 1 0 1 Ss|X X X S F T

4:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 | A A A A A A
0 O 1 0 sS|o0 1 1 S H | F T

1. (src(31-16)) — Smem

2. (src) << (ASM - 16) — Smem
3: (src) << (SHFT - 16) — Xmem
4: (src) << (SHIFT — 16) — Smem

Affected by SXM

This instruction stores the high part of src (bits 31-16) in data-memory location
Smem. The srcis shifted left (as specified by ASM, SHFT, or SHIFT) and bits
31-16 of the shifted value are stored in data memory (Smem or Xmem). If
SXM = 0, hit 39 of srcis copied in the MSBs of the data-memory location. If
SXM =1, the sign-extended value with bit 39 of srcis stored in the MSBs of
the data-memory location after being right-shifted by the exceeding guard bit
margin. The src remains unaffected.

Assembly Language Instructions 4-169

STH Store Accumulator High Into Memory

Words

Cycles

Classes

Example 1

Example 2

4-170

Notes:

The following syntaxes are assembled as a different syntax in certain cases.
[Syntax 3: If SHFT = 0, the instruction opcode is assembled as syntax 1.
(1 Syntax 4:If SHIFT = 0, the instruction opcode is assembled as syntax 1.

[Syntax 4:1f 0 < SHIFT <15 and an indirect modifier is equal to one of
the Xmem modes, the instruction opcode is assembled as syntax 3.

Syntaxes 1, 2, and 3: 1 word
Syntax 4: 2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntaxes 1, 2, and 3: 1 cycle
Syntax 4: 2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntaxes 1, 2, and 3: Class 10A (see page 3-22)
Syntaxes 1 and 2: Class 10B (see page 3-23)
Syntax 4: Class 11A (see page 3-24)

Syntax 4: Class 11B (see page 3-25)

STH A, 10
Before Instruction After Instruction
A | FF87654321 | A
0P | o0d] oP
Data Memory
020Ah | 1234] 020Ah
STH B, -8, *AR7—-
Before Instruction After Instruction
B | FF84211234 | B
AR7 | 0321] AR7
Data Memory
0321h | ABCO 0321h

Store Accumulator High Into Memory STH

Example 3 STH A, -4, 10
Before Instruction
A |__FF84211234 |
SXM | 1]
DP | 004]
Data Memory
020Ah | 7FFF]

After Instruction

A FF 8421 1234

SXM
DP

020Ah F842

Assembly Language Instructions

4-171

STL Store Accumulator Low Into Memory

Syntax 1. STL src, Smem
2. STL src, ASM, Smem
3: STL src, SHFT, Xmem
4: STL src|[, SHIFT], Smem
Operands Src: A (accumulator A)
B (accumulator B)
Smem: Single data-memory operand
Xmem: Dual data-memory operand
0 < SHFT = 15
-16 < SHIFT = 15
Opcode 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o o 0o o o s|[1 A A A A A A Al
2:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o o o 1 0o s|1 A A A A A A A
3:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o 12 1 0 0 s|[x X X X s H T |
4:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1|1 A A A A A A A
o o 0o 1 1 0 sS|1 0o 0O S H I F T
Execution 1. (src(15-0)) — Smem
2. (src) << ASM — Smem
3. (src) << SHFT — Xmem
4: (src) << SHIFT — Smem
Status Bits Affected by SXM
Description This instruction stores the low part of src (bits 15-0) in data-memory location

Smem. The srcis shifted left (as specified by ASM, SHFT, or SHIFT) and bits
15-0 of the shifted value are stored in data memory (Smem or Xmem). When
the shifted value is positive, zeros are shifted into the LSBs.

4-172

Store Accumulator Low Into Memory STL

Notes:

The following syntaxes are assembled as a different syntax in certain cases.
[Syntax 3: If SHFT = 0, the instruction opcode is assembled as syntax 1.
(1 Syntax 4:If SHIFT = 0, the instruction opcode is assembled as syntax 1.

1 Syntax4:1f0 < SHIFT <15 and an indirect modifier is equal to one of
the Xmem modes, the instruction opcode is assembled as syntax 3.

Words Syntaxes 1, 2, and 3: 1 word
Syntax 4: 2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

Cycles Syntaxes 1, 2, and 3: 1 cycle
Syntax 4: 2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Classes Syntaxes 1, 2, and 3: Class 10A (see page 3-22)
Syntaxes 1, 2, and 3: Class 10B (see page 3-23)
Syntax 4: Class 11A (see page 3-24)
Syntax 4: Class 11B (see page 3-25)

Example 1 STLA, 11
Before Instruction After Instruction
A |_FF87654321 | A
DP | 004] DP
Data Memory
020Bh | 1234] 020Bh[___ 4321]
Example 2 STL B, -8, *AR7—
Before Instruction After Instruction
B [__FF84211234 | B
SXM | 0] ssm[_ 0
AR7 | 0321 | AR7
Data Memory
0321h | 0099 | 0321h

Assembly Language Instructions 4-173

STL Store Accumulator Low Into Memory

Example 3 STLA, 7,11
Before Instruction
A [__FFs4211234 |
DP | 004]

Data Memory
020Bh | 0101]

4-174

After Instruction

A [FFsa211234
op [0o04]

020Bh 1A00

Syntax

Operands

Opcode

Execution
Status Bits

Description

Words
Cycles
Classes

Example 1

Example 2

Store Accumulator Low Into Memory-Mapped Register STLM

STLM src, MMR

src: A (accumulator A)
B (accumulator B)
MMR: Memory-mapped register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o o 1 0o o s|1 A A A A A A A

(src(15-0)) - MMR
None

This instruction stores the low part of src (bits 15-0) into the addressed
memory-mapped register MMR. The nine MSBs of the effective address are
cleared to O regardless of the current value of DP or of the upper nine bits of
ARX. This instruction allows src to be stored in any memory location on data
page 0 without modifying the DP field in status register STO.

1 word
1 cycle

Class 10A (see page 3-22)

STLM A, BRC
Before Instruction After Instruction
A | FF87654321 | A
BRC(1Ah) | 1234 | BRC
STLM B, *AR1-
Before Instruction After Instruction
B [FF84211234 | B
ARL | 3F17] ARL
AR7(17h)| 0099 | AR7

Assembly Language Instructions 4-175

STM Store Immediate Value Into Memory-Mapped Register

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example 1

Example 2

4-176

STM #lk, MMR

MMR: Memory-mapped register
-32768 < |k = 32767

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 1 1 1|I A A A A A A A

16-bit constant

Ik - MMR
None

This instruction stores a 16-bit constant /k into a memory-mapped register
MMR or a memory location on data page 0 without modifying the DP field in
status register STO. The nine MSBs of the effective address are cleared to 0
regardless of the current value of DP or of the upper nine bits of ARX.

2 words
2 cycles
Class 12A (see page 3-26)

STM OFFFFh, IMR

Before Instruction After Instruction
IMR | Fro1] IMR
STM 8765h, *AR7+
Before Instruction After Instruction
ARO | 0000] ARO
AR7 | 8010 AR7

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

Store Accumulator With Parallel Add ~ ST||[ADD

ST src, Ymem
|| ADD Xmem, dst

src, dst: A (accumulator A)
B (accumulator B)
Xmem, Ymem: Dual data-memory operands

dst _: If dst= A, then dst_=B; if dst=B, then dst = A
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 1 1 0 0 0O 0 S D | X X X X Y Y N

(src) << (ASM — 16) — Ymem
(dst_) + (Xmem) << 16 — dst

Affected by OVM, SXM, and ASM
Affects C and OVdst

This instruction stores src shifted by (ASM — 16) in data-memory location
Ymem. In parallel, this instruction adds the content of dst_ to the data-memory
operand Xmem shifted left 16 bits, and stores the result in dst. If srcis equal
to dst, the value stored in Ymem is the value of src before the execution.

1 word
1 cycle

Class 14 (see page 3-30)

ST A, *AR3
[JADD *AR5+0%, B
Before Instruction After Instruction
A [__FF84211000 | A
B [0000001111 | B
owm | 0] o[
s | i sx
ASM | 1] ASM
ARO | 0002 | ARO
AR3 | 0200 | AR3
AR5 | 0300 | AR5
Data Memory
0200h | 0101 | 0200h
0300h | 8001 | 0300h

Assembly Language Instructions 4-177

ST||LD Store Accumulator With Parallel Load

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles

Classes

4-178

1. ST src, Ymem
|| LD Xmem, dst

2: ST src, Ymem
|| LD Xmem, T

src, dst: A (accumulator A)
B (accumulator B)
Xmem, Ymem: Dual data-memory operands

1:
15 14 13 12 11 10 9 8 7 6 5 4 3 2
[1 1 0o o 1 0o s D

=
o

x
x
x
x
<
<
<

2:
15 14 13 12 11 10 9 8 7 6 5 4 3 2
[1 1 1 0o 0o 1 s o]

=
o

x
x
x
x
<
<
<

1. (src) << (ASM — 16) — Ymem
(Xmem) << 16 — dst

2. (src) << (ASM — 16) — Ymem
(Xmem) - T

Affected by OVM and ASM
Affects C

This instruction stores src shifted by (ASM — 16) in data-memory location
Ymem. In parallel, this instruction loads the 16-bit dual data-memory operand
Xmemto dstor T. If srcis equal to dst, the value stored in Ymem is the value
of src before the execution.

1 word
1 cycle

Class 14 (see page 3-30)

Store Accumulator With Parallel Load ST]||LD

Example 1 ST B, *AR2—
[|ILD *AR4+, A
Before Instruction After Instruction
A [000000001C] A
B [_FF84211234 | B
s |] SXM
ASM | ic] ASM
AR2 | 01FF | AR2
AR4 | 0200 | AR4
Data Memory
01FFh | ook | 01FFh
0200h | 8001 | 0200h
Example 2 ST A, *AR3
[|ILD *AR4, T
Before Instruction After Instruction
A | FF84211234 | A
T 3456 | T
ASM | 1] ASM
AR3 | 0200 | AR3
AR4 | 0100 | AR4
Data Memory
0200h | 0001 | 0200h
0100h | 8OFF] 0100h
Example 3 ST A, *AR2+
[|ILD *AR2—, A

In Example 3, the LD reads the source operand at the memory location pointed
to by AR2 before the ST writes to the same location. The ST reads the source
operand of accumulator A before LD loads accumulator A.

Assembly Language Instructions 4-179

ST|IMAC[R] Store Accumulator With Parallel Multiply Accumulate With/Without Rounding

Syntax ST src, Ymem
[| MAC[R] Xmem, dst

Operands src, dst: A (accumulator A)
B (accumulator B)
Xmem, Ymem: Dual data-memory operands

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 o0 1 o R s D[Xx x x X Y Yy vy Y

Execution (src << (ASM —16)) — Ymem
If (Rounding)
Then
Round ((Xmem) x (T) + (dst)) — dst
Else

(Xmem) x (T) + (dst) — dst

Status Bits Affected by OVM, SXM, ASM, and FRCT
Affects C and OVdst

Description This instruction stores src shifted by (ASM — 16) in data-memory location
Ymem. In parallel, this instruction multiplies the content of T by the data-
memory operand Xmem, adds the value in dst (with or without rounding), and
stores the result in dst. If srcis equal to dst, the value stored in Ymem is the
value of src before the execution of this instruction.

If you use the R suffix, this instruction rounds the result of the multiply accumu-
late operation by adding 215 to the result and clearing the LSBs (bits 15-0) to

0.
Words 1 word
Cycles 1 cycle
Classes Class 14 (see page 3-30)

4-180

Store Accumulator With Parallel Multiply Accumulate With/Without Rounding ST||MAC[R]

Example 1 ST A, *AR4—
[[IMAC *ARS5, B
Before Instruction
A [oooo111111 |
B | 0000001111 |
T | 0400 |
ASM | 5]
FRCT | o]
AR4 | 0100 |
AR5 | 0200]
Data Memory
100h | 1234]
200h | 4321 |

Example 2 ST A, *AR4+
[[MACR *AR5+, B

Before Instruction

[oooo111111 |

[0000001111 |

| 0400 |
ASM | 1c |
FRCT | 0
AR4 | 0100 |
AR5 | 0200]

Data Memory

100h | 1234]
200h | 4321 |

A 0000111111
B 00 010C 9511
T

>
=
]
2
=1
@
=
c
(o]
=
o
>

0400
ASM
FRT[_
AR4
AR5
100h
200h

After Instruction

A

B
asMm [ac]
rReT [o]
AR4
AR5
100h
200h

Assembly Language Instructions

ST||IMASIR] Store Accumulator With Parallel Multiply Subtract With/Without Rounding

Syntax ST src, Ymem
[| MAS[R] Xmem, dst

Operands src, dst: A (accumulator A)
B (accumulator B)
Xmem, Ymem: Dual data-memory operands

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 o 1 1 R s D[Xx x X X Y Y Y Y

Execution (src << (ASM — 16)) — Ymem
If (Rounding)
Then
Round ((dst) — (Xmem) x (T))— dst
Else

(dst) — (Xmem) x (T) — dst

Status Bits Affected by OVM, SXM, ASM, and FRCT
Affects C and OVdst

Description This instruction stores src shifted by (ASM — 16) in data-memory location
Ymem. In parallel, this instruction multiplies the content of T by the data-
memory operand Xmem, subtracts the value from dst (with or without round-
ing), and stores the resultin dst. If srcis equal to dst, the value stored in Ymem
is the value of src before the execution of this instruction.

If you use the R suffix, this instruction optionally rounds the result of the multi-
ply subtract operation by adding 215 to the result and clearing the LSBs (bits

15-0) to 0.
Words 1 word
Cycles 1 cycle
Classes Class 14 (see page 3-30)

4-182

Store Accumulator With Parallel Multiply Subtract With/Without Rounding ~ ST||MAS[R]

Example 1 ST A, *AR4+

IMAS *ARS5, B

A
B

AR5
Data Memory
0100h
0200h

ST A, *AR4+
IMASR *AR5+, B

Example 2

A
B

ASM
FRCT
AR4
AR5
Data Memory
0100h
0200h

Before Instruction

00 0011 1111 |

00 0000 1111 |

0400 |

Before Instruction

00 0011 1111 |

000000 1111 |

0400 |

0001 |

0|

0100 |

0200]

1234]

4321 |

After Instruction

(0000111111 |
[o0400]
asm [5]
FRTL__
AR4
AR5

A
B
T

0100h 0222
0200h 4321

After Instruction

A
:
T
AsM [0001}
FRT[_
AR4 [o101]
AR5 [0201]

0100h 0022
0200h 4321

Assembly Language Instructions

4-183

ST||IMPY Store Accumulator With Parallel Multiply

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

4-184

ST src, Ymem
[| MPY Xmem, dst

src, dst: A (accumulator A)
B (accumulator B)
Xmem, Ymem: Dual data-memory operands

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 0o o 1 1 s D[x x x x Y Yy Y Y

(src << (ASM — 16)) — Ymem
(T) X (Xmem) — dst

Affected by OVM, SXM, ASM, and FRCT
Affects C and OVdst

This instruction stores src shifted by (ASM — 16) in data-memory location
Ymem. In parallel, this instruction multiplies the content of T by the 16-bit dual
data-memory operand Xmem, and stores the resultin dst. If srcis equal to dst,
then the value stored in Ymem is the value of src before the execution.

1 word
1 cycle

Class 14 (see page 3-30)

ST A, *AR3+
[IMPY *AR5+, B
Before Instruction After Instruction
A [FF84211234 | A
B[xoooooxoxx | B
L 4000 | T
ASM | 00] ASM
FRCT | 1] FRCT
AR3 | 0200 | AR3
AR5 | 0300 | AR5
Data Memory
0200h | 1111 | 0200h
0300h | 4000 | 0300h

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

Store Accumulator With Parallel Subtract ST||SUB

ST src, Ymem
|| SUB Xmem, dst

src, dst: A (accumulator A)
B (accumulator B)
Xmem, Ymem: Dual data-memory operands
dst _: If dst= A, then dst_= B; if dst= B, then dst_ = A.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|l 1 0 0 0 1 SD|XXXXYYYY

(src << (ASM — 16)) — Ymem
(Xmem) << 16 — (dst_) — dst

Affected by OVM, SXM, and ASM
Affects C and OVdst

This instruction stores src shifted by (ASM — 16) in data-memory location
Ymem. In parallel, this instruction subtracts the content of dst_from the 16-bit
dual data-memory operand Xmem shifted left 16 bits, and stores the result in
dst. If srcis equal to dst, then the value stored in Ymem s the value of src be-
fore the execution.

1 word
1 cycle

Class 14 (see page 3-30)

ST A, *AR3—
[|SUB *AR5+0%, B
Before Instruction After Instruction
A [__FF84210000 | A
B [__0010000001 | B
ASM | o1] ASM
sSxM | 1] SXM
ARO | 0002 | ARO
AR3 | 01FF | AR3
AR5 | 0300 | AR5
Data Memory
01FFh | 1111 | 01FFh
0300h | 8001 | 0300h

Assembly Language Instructions 4-185

STRCD Store T Conditionally

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

4-186

STRCD Xmem, cond

Xmem: Dual data-memory operand

The following table lists the conditions (cond operand) for this instruction.

Condition Condition
Cond Description Code Cond Description Code
AEQ (A)=0 0101 BEQ (B)=0 1101
ANEQ (A) = 0 0100 BNEQ (B) =0 1100
AGT (A) > 0 0110 BGT (B) >0 1110
AGEQ (A)=0 0010 BGEQ (B) =0 1010
ALT (A) < 0 0011 BLT (B) <0 1011
ALEQ (A) <0 0111 BLEQ (B) <0 1111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 o o 12 1 1 0o o[x x x x ¢ o N D

If (cond)
(T) = Xmem
Else

(Xmem) — Xmem

None

If the condition is true, this instruction stores the content of T into the data-
memory location Xmem. If the condition is false, the instruction reads Xmem
and writes the value in Xmem back to the same address; thus, Xmem remains
the same. Regardless of the condition, Xmem is always read and updated.

1 word

1 cycle

Class 15 (see page 3-32)

STRCD *AR5—, AGT

Before Instruction

A | 0070FF FFFF |
T | 4321 |
AR5 | 0202]
Data Memory
0202h | 1234 |

After Instruction

A [_00 70FF FFFF

T 4321
AR5 0201

0202h 4321

Syntax

Operands

Opcode

Subtract From Accumulator

SUB Smem, src

SUB Smem, TS, src

SUB Smem, 16, src|, dst]

SUB Smem |, SHIFT], src|, dst]
SUB Xmem, SHFT, src

SUB Xmem, Ymem, dst

SUB #lk [, SHFT], src|, dst]
SUB #lk, 16, src|, dst]

SUB src|[, SHIFT], [, dst]

SUB src, ASM |, dst]

NGO WNRE

|
e

src, dst: A (accumulator A)

B (accumulator B)
Smem: Single data-memory operand
Xmem, Ymem: Dual data-memory operands
-32768 < |k = 32767
0 < SHFT =< 15
—-16 < SHIFT =< 15

SuB

1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o o o 1 0o 0o s|1 A A A A A A A
2:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o 0o o 1 1 0o s]|i A A A Al
3:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 0 o0 o o s b1 A A A Al
4.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1|1 A A A A
) 1 1 s D|loO 0 1 S H I F T
5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 0o o 1 o o 1 s]|x X X S FoT |
6:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 0 o o 1 D[Xx X Xx X Y v |
7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 s DlO 0 0 1 S H F T

16-bit constant
Assembly Language Instructions 4-187

SUB Subtract From Accumulator

Execution

Status Bits

Description

4-188

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S D 0 1

16-bit constant

=
=
=
N
o
o
[
o
o
o
[

9:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 12 o 1 s bplo o 1 s H I T |
10:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 1 o 1 s bl1 o o o0 o 1 |

(src) — (Smem) — src

(src) — (Smem) << TS — src

(src) — (Smem) << 16 — dst

(src) — (Smem) << SHIFT — dst

(src) — (Xmem) << SHFT — src
(Xmem) << 16 — (Ymem) << 16 — dst
(src) — Ik << SHFT — dst

(src) — Ik << 16 — dst

. (dst) — (src) << SHIFT — dst

10: (dst) — (src) << ASM — dst

NN R

Affected by SXM and OVM
Affects C and OVdst (or OVsrc, if dst = src)

For instruction syntax 3, if the result of the subtraction generates a borrow, the
carry bit, C, is cleared to 0; otherwise, C is not affected.

This instruction subtracts a 16-bit value from the content of the selected accu-
mulator or from the 16-bit operand Xmem in dual data-memory addressing
mode. The 16-bit value to be subtracted is one of the following:

[The content of a single data-memory operand (Smem)
[The content of a dual data-memory operand (Ymem)
[A 16-bit immediate operand (#/k)

[The shifted value in src

If a dstis specified, this instruction stores the resultin dst. If no dstis specified,
this instruction stores the result in src. Most of the second operands can be
shifted. For a left shift:

[Low-order bits are cleared
[High-order bits are:

B Sign extended if SXM =1
B Clearedif SXM =0

Words

Cycles

Classes

Example 1

Subtract From Accumulator SUB

For a right shift, the high-order bits are:

B Sign extended if SXM =1
B Clearedif SXM=0

Notes:
The following syntaxes are assembled as a different syntax in certain cases.

(1 Syntax 4: If dst = src and SHIFT = 0, then the instruction opcode is
assembled as syntax 1.

(1 Syntax4:If dst=src, SHIFT < 15, and Smemindirect addressing mode
is included in Xmem, then the instruction opcode is assembled as
syntax 1.

Syntaxes 1, 2, 3, 5, 6, 9, and 10: 1 word
Syntaxes 4, 7, and 8: 2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntaxes 1, 2, 3, 5, 6, 9, and 10: 1 cycle
Syntaxes 4, 7, and 8: 2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Syntaxes 1, 2, 3, and 5: Class 3A (see page 3-5)
Syntaxes 1, 2, and 3: Class 3B (see page 3-6)
Syntax 4: Class 4A (see page 3-7)

Syntax 4: Class 4B (see page 3-8)

Syntax 6: Class 7 (see page 3-12)

Syntaxes 7 and 8: Class 2 (see page 3-4)
Syntaxes 9 and 10: Class 1 (see page 3-3)

SUB *AR1+, 14, A

Before Instruction After Instruction
A | 0000001200 | A
c | x] c [¢
sXM | 1] SXM
ARL | 0100 | AR1
Data Memory
0100h | 1500 | 0100h

Assembly Language Instructions 4-189

SUB Subtract From Accumulator

Example 2 SUB A, -8,B
Before Instruction After Instruction
A [0000001200 | A
B [__000000 1800 | B
c | x] c
SXM | 1] SXM
Example 3 SUB #12345, 8, A, B
Before Instruction After Instruction
A [0000001200 | A
B [__000000 1800 | B
c | x] c [9
SN 1] SXM
Example 4 ST B, *AR2—
|ILD *AR4+, A
Before Instruction After Instruction
A [__000000001C | A
B [_FF84211234 | B
oM | i SXM
ASM | 1c] ASM
AR2 | 01FF | AR2
AR4 | 0200 | AR4
Data Memory
O1FFh | x| 01FFh
0200h | 8001 | 0200h
Example 5 ST A, *AR3
ILD *AR4, T
Before Instruction After Instruction
A |__FFs84211234 | A
T 3456 | T
ASM | 1] ASM
AR3 | 0200 | AR3
AR4 | 0100 | AR4
Data Memory
0200h | 0001 | 0200h
0100h | 80FF | 0100h
Example 6 ST A, *AR2+
ILD *AR2—, A

In Example 6, the LD reads the source operand at the memory location pointed
to by AR2 before the ST writes to the same location. The ST reads the source
operand of accumulator A before LD loads accumulator A.

4-190

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example 1

Example 2

Subtract From Accumulator With Borrow SUBB

SUBB Smem, src

src: A (accumulator A)
B (accumulator B)
Smem: Single data-memory operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o o o o 1 1 1 D|1I A A A A A A A

(src) — (Smem) — (logical inversion of C) — src

Affected by OVM and C
Affects C and OVsrc

This instruction subtracts the content of the 16-bit single data-memory oper-

and Smem and the logical inverse of the carry bit, C, from src without sign
extension.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 3A (see page 3-5)
Class 3B (see page 3-6)

SUBB 5, A
Before Instruction After Instruction
A | 0000000006 | A
c | 0] S
DP | 008] DP
Data Memory
0405h | 0006 | 0405h
SUBB *AR1+, B
Before Instruction After Instruction
B [__FF 80000006 | B
c | 1] c
owM | 1] ovM
ARL | 0405 | AR1
Data Memory
0405h | 0006 | 0405h

Assembly Language Instructions 4-191

SUBC Subtract Conditionally

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

4-192

SUBC Smem, src

Smem: Single data-memory operand
Src: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o o 1 1 1 1 s|i1 A A A A A A A

(src) — ((Smem) << 15) — ALU output
If ALU output = O

Then

((ALU output) << 1) + 1 — src
Else (src) << 1 — src

Affected by SXM
Affects C and OVsrc

This instruction subtracts the 16-bit single data-memory operand Smem, left-
shifted 15 bits, from the content of src. If the result is greater than 0, it is shifted
1 bitleft, 1 is added to the result, and the result is stored in src. Otherwise, this
instruction shifts the content of src 1 bit left and stores the result in src.

The divisor and the dividend are both assumed to be positive in this instruction.
The SXM bit affects this operation in these ways:

[If SXM = 1, the divisor must have a 0 value in the MSB.
[If SXM =0, any 16-bit divisor value produces the expected results.

The dividend, which is in src, must initially be positive (bit 31 must be 0) and
must remain positive following the accumulator shift, which occurs in the first
portion of the instruction.

This instruction affects OVA or OVB (depending on src) but is not affected by
OVM,; therefore, src does not saturate on positive or negative overflows when
executing this instruction.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Classes

Example 1

Example 2

Class 3A (see page 3-5)
Class 3B (see page 3-6)

Subtract Conditionally SUBC

SUBC 2, A
Before Instruction After Instruction
A | 0000000004 | A
c | 7 T
oP | 006] DP
Data Memory
0302h | 0001 | 0302h
RPT #15
SUBC *AR1, B
Before Instruction After Instruction
B [__0000000041 | B
c | X c
ARL | 1000 | AR1
Data Memory
1000h | 0007 1000h

Assembly Language Instructions 4-193

SUBS Subtract From Accumulator With Sign Extension Suppressed

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

Example

4-194

SUBS Smem, src

Smem: Single data-memory operand
Src: A (accumulator A)
B (accumulator B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o o o 1 0o 1 s|i1 A A A A A A A

(src) — unsigned (Smem) — src

Affected by OVM
Affects C and OVsrc

This instruction subtracts the content of the 16-bit single data-memory oper-
and Smem from the content of src. Smem is considered a 16-bit unsigned
number regardless of the value of SXM. The result is stored in src.

1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

1 cycle

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 3A (see page 3-5)
Class 3B (see page 3-6)

SUBS *AR2—-, B

Before Instruction After Instruction
B | 0000000002 | B
c | x] c [¢
AR2 | 0100 AR2
Data Memory
0100h | FOO6 | 0100h

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words
Cycles
Classes

Example

Software Interrupt TRAP

TRAP K
0=K=31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 1 1 1 0 1 0 0 1 1 0 K K K K K

(SP) -1 —-5SP
(PC) + 1 —=TOS
Interrupt vector specified by K — PC

None

This instruction transfers program control to the interrupt vector specified by
K. This instruction allows you to use your software to execute any interrupt
service routine. For a list of interrupts and their corresponding K value, see
Appendix B.

This instruction pushes PC + 1 onto the data-memory location addressed by
SP. This enables a return instruction to retrieve the pointer to the instruction
after the trap from the data-memory location addressed by SP. This instruction
is not maskable and is not affected by INTM nor does it affect INTM.

Note:

This instruction is not repeatable.

1 word
3 cycles

Class 35 (see page 3-72)

TRAP 10h
Before Instruction After Instruction
PC | 1233 | PC
sp | 03FF] SP
Data Memory
03FEh | 9653 | 03FEh

Assembly Language Instructions 4-195

WRITA Write Data to Program Memory Addressed by Accumulator A

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Classes

4-196

WRITA Smem
Smem: Single data-memory operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 1 1 1 1 1|1 A A A A A A A

A — PAR
If (RC) = 0
Then
(Smem) — (Pmem addressed by PAR)
(PAR) + 1 — PAR
(RC)-1—=RC
Else
(Smem) — (Pmem addressed by PAR)

None

This instruction transfers a word from a data-memory location specified by
Smem to a program-memory location. The program-memory address is de-
fined by accumulator A as follows, depending on the specific device.

'541-'546 '548, '549

A(15-0) A(22-0)

This instruction can be used with the repeat instruction to move consecutive
words (using indirect addressing) in data memory to a continuous program-
memory space addressed by PAR by automatically incrementing PAR. The ini-
tial value is set with the 16 LSBs of accumulator A. The source and destination
blocks in memory do not have to be entirely on-chip or off-chip. When used
with repeat, this instruction becomes a single-cycle instruction once the repeat
pipeline is started.

The content of accumulator A is not affected by this instruction.
1 word

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

5 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 26A (see page 3-60)
Class 26B (see page 3-62)

Write Data to Program Memory Addressed by Accumulator A WRITA

Example WRITA 5
Before Instruction
A [__0000000257 |
DP | 032]
Program Memory
0257h | 0306 |
Data Memory
1005h | 4339]

After Instruction

A [[000000 0257
P

0257h 4339
1005h 4339

Assembly Language Instructions

4-197

XC Execute Conditionally

Syntax

Operands

Opcode

Execution

Status Bits

4-198

XC n, cond|, cond [, cond]]

n=1or2

The following table lists the conditions (cond operand) for this instruction.

Condition Condition
Cond Description Code Cond Description Code
BIO BIO low 00000011 [[NBIO BIO high 0000 0010
C c=1 0000 1100 NC C=0 0000 1000
TC TC=1 0011 0000 NTC TC=0 0010 0000
AEQ (A)=0 0100 0101 BEQ (B)=0 0100 1101
ANEQ (A) =0 0100 0100 BNEQ (B) =0 0100 1100
AGT (A) >0 0100 0110 BGT (B) >0 0100 1110
AGEQ A) =0 0100 0010 BGEQ B)=0 0100 1010
ALT (A) <O 0100 0011 BLT (B) <0 0100 1011
ALEQ (A) <0 01000111 || BLEQ (B) <0 0100 1111
AOV A overflow 0111 0000 BOV B overflow 0111 1000
ANOV A no overflow 0110 0000 BNOV B no overflow 0110 1000
UNC Unconditional 0000 0000

15 14 13 12 11 10 9 8 7 6 4 3 1 0
1 1 1 1 1 1 N 1 C C C C C C
Syntax n Opcode N

1 0

2 1
If (cond)

Then

Next n instructions are executed

Else

Execute NOP for next n instructions

None

Description

Execute Conditionally XC

The execution of this instruction depends on the value of n and the selected

conditions:

[If n=1 and the condition(s) is met, the 1-word instruction following this
instruction is executed.

[If n=2 and the condition(s) is met, the one 2-word instruction or the two
1-word instructions following this instruction are executed.

[Ifthe condition(s) is not met, one or two nops are executed depending on
the value of n.

This instruction tests multiple conditions before executing and can test the
conditions individually or in combination with other conditions. You can com-
bine conditions from only one group as follows:

Group 1:

Group 2:

You can select up to two conditions. Each of these conditions
must be from a different category (category A or B); you cannot
have two conditions from the same category. For example, you
cantest EQ and OV atthe same time but you cannottest GT and
NEQ at the same time. The accumulator must be the same for
both conditions; you cannot test conditions for both accumula-
tors with the same instruction. For example, you can test AGT
and AQV at the same time, but you cannot test AGT and BOV
at the same time.

You can select up to three conditions. Each of these conditions
must be from a different category (category A, B, or C); you can-
not have two conditions from the same category. For example,
you cantest TC, C, and BIO at the same time but you cannot test
NTC, C, and NC at the same time.

Conditions for This Instruction

Group 1 Group 2

Category A

Category B Category A Category B Category C

EQ
NEQ
LT
LEQ
GT

GEQ

ov TC C BIO

NOV NTC NC NBIO

This instruction and the two instruction words following this instruction are
uninterruptible.

Assembly Language Instructions 4-199

XC Execute Conditionally

Words
Cycles
Classes

Example

4-200

Note:

The conditions tested are sampled two full cycles before this instruction is
executed. Therefore, if the two 1-word instructions or one 2-word instruction
modifies the conditions, there is no effect on the execution of this instruction,
but if the conditions are modified during the two slots, the interrupt operation
using this instruction can cause undesirable results.

This instruction is not repeatable.

1 word
1 cycle
Class 1 (see page 3-3)

XC 1, ALEQ
MAR *AR1+
ADD A, DAT100

Before Instruction After Instruction
A |__FFFFFFFFFF | A FF FFFF FFFF
AR1 | 0032] AR1 0033

Ifthe content of accumulator Ais less than or equal to 0, AR1 is modified before
the execution of the addition instruction.

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Exclusive OR With Accumulator XOR

XOR Smem, src

XOR #lk[, SHFT], src|, dst]
XOR #lk, 16, src|, dst]
XOR src|[, SHIFT] [, dst]

src, dst: A (accumulator A)
B (accumulator B)
Smem: Single data-memory operand
0 < SHFT =< 15
-16 < SHIFT =< 15
0 =< |k = 65535

1:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 0 0 1 1 1 0 s|1 A A A A A A A
2:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1111008D|0101$HFT
16-bit constant
3:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
i1 1 1 1 o O S D|O 1 1 o 0 1 o0 1
16-bit constant

4.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 1 o o s b|l]1 1 0o s H I F T

1: (Smem) XOR (src) — src

2. |k << SHFT XOR (src) — dst

3: k<< 16 XOR (src) — dst

4: (src) << SHIFT XOR (dst) — dst

None

This instruction executes an exclusive OR of the 16-bit single data-memory
operand Smem (shifted as indicated in the instruction) with the content of the
selected accumulator and stores the result in dstor src, as specified. For a left
shift, the low-order bits are cleared and the high-order bits are not sign ex-
tended. For a right shift, the sign is not extended.

Syntaxes 1 and 4: 1 word
Syntaxes 2 and 3: 2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

Assembly Language Instructions 4-201

XOR Exclusive OR With Accumulator

Cycles

Classes

Example 1

Example 2

4-202

Syntaxes 1 and 4: 1 cycle
Syntaxes 2 and 3: 2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing

with an Smem.

Syntax 1: Class 3A (see page 3-5)
Syntax 1: Class 3B (see page 3-6)

Syntaxes 2 and 3: Class 2 (see page 3-4)

Syntax 4: Class 1 (see page 3-3)

XOR *AR3+, A
Before Instruction
A [__0000FF 1200 |
AR3 | 0100]
Data Memory
0100h | 1500 |
XORA, +3, B
Before Instruction
A [0000001200 |
B | 0000001800 |

After Instruction

A 00 00FF 0700
AR3 0101
0100h 1500
After Instruction
A 00 0000 1200
B 00 0000 8800

Syntax

Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Classes

Example

Exclusive OR Memory With Constant XORM

XORM #lk, Smem

Smem: Single data-memory operand
0 = |k = 65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 0o 1 0o 1 o1 A A A A A A A

Ik XOR (Smem) — Smem
None

This instruction executes an exclusive OR of the content of a data-memory
location Smem with a 16-bit constant /k. The result is written to Smem.

Note:

This instruction is not repeatable.

2 words

Add 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing
with an Smem.

Class 18A (see page 3-39)
Class 18B (see page 3-39)

XORM 0404h, *AR4—

Before Instruction After Instruction
AR4 | 0100 AR4
Data Memory
0100h | 4444 | 0100h

Assembly Language Instructions 4-203

4-204

Appendix A

Condition Codes

This appendix lists the conditions for conditional instructions (Table A—1) and
the combination of conditions that can be tested (Table A—-2). Conditional
instructions can test conditions individually or in combination with other condi-
tions. You can combine conditions from only one group as follows:

Groupl: You can select up to two conditions. Each of these conditions
must be from a different category (category A or B); you cannot
have two conditions from the same category. For example, you
cantest EQ and OV at the same time but you cannottest GT and
NEQ at the same time. The accumulator must be the same for
both conditions; you cannot test conditions for both accumula-
tors with the same instruction. For example, you can test AGT
and AQV at the same time, but you cannot test AGT and BOV
at the same time.

Group 2: You can select up to three conditions. Each of these conditions
must be from a different category (category A, B, or C); you can-
not have two conditions from the same category. For example,
you cantest TC, C, and BIO at the same time but you cannot test
NTC, C, and NC at the same time.

Conditions for Conditional Instructions

Table A—1. Conditions for Conditional Instructions

Operand Condition Description

AEQ A=0 Accumulator A equal to O

BEQ B=0 Accumulator B equal to 0

ANEQ A=0 Accumulator A not equal to 0

BNEQ B=0 Accumulator B not equal to 0

ALT A<O0 Accumulator A less than 0

BLT B<O Accumulator B less than 0

ALEQ A<0 Accumulator A less than or equal to 0
BLEQ B=<0 Accumulator B less than or equal to 0
AGT A>0 Accumulator A greater than 0

BGT B>0 Accumulator B greater than 0

AGEQ A=0 Accumulator A greater than or equal to 0
BGEQ B=0 Accumulator B greater than or equal to 0
AoVt AOV =1 Accumulator A overflow detected
BovT BOvV=1 Accumulator B overflow detected
ANOVT AOV =0 No accumulator A overflow detected
BNOVT BOV =0 No accumulator B overflow detected
ct c=1 ALU carry setto 1

NCT C=0 ALU carry clear to 0

TCt TC=1 Test/Control flag set to 1

NTCT TC=0 Test/Control flag cleared to 0

BIOT BIO low BIO signal is low

NBIOT BIO high BIO signal is high

UNct none Unconditional operation

T Cannot be used with conditional store instructions

A-2

Table A—2. Groupings of Conditions

Groupings of Conditions

Group 1

Category A

EQ
NEQ
LT
LEQ
GT

GEQ

Group 2
Category A Category B Category C
TC C BIO
NTC NC NBIO

Condition Codes A-3

A4

Appendix B

Interrupt Locations and Priority Tables

This appendix lists the '54x interrupt locations and priorities for each individual
device type.

B-1

'541 Interrupt Locations and Priorities

Table B—-1. '541 Interrupt Locations and Priorities

TRAP/INTR
Number (K) Priority Name Location Function
0 1 RS/SINTR 0 Reset (hardware and software reset)
1 2 NMI/SINT16 4 Nonmaskable interrupt
2 - SINT17 8 Software interrupt #17
3 - SINT18 C Software interrupt #18
4 - SINT19 10 Software interrupt #19
5 - SINT20 14 Software interrupt #20
6 - SINT21 18 Software interrupt #21
7 - SINT22 1C Software interrupt #22
8 - SINT23 20 Software interrupt #23
9 - SINT24 24 Software interrupt #24
10 - SINT25 28 Software interrupt #25
11 - SINT26 2C Software interrupt #26
12 - SINT27 30 Software interrupt #27
13 - SINT28 34 Software interrupt #28
14 - SINT29 38 Software interrupt #29; reserved
15 - SINT30 3C Software interrupt #30; reserved
16 3 INTO/SINTO 40 External user interrupt #0
17 4 INTL/SINT1 44 External user interrupt #1
18 5 INT2/SINT2 48 External user interrupt #2
19 6 TINT/SINT3 4C Internal timer interrupt
20 7 RINTO/SINT4 50 Serial port O receive interrupt
21 8 XINTO/SINT5S 54 Serial port O transmit interrupt
22 9 RINT1/SINT6 58 Serial port 1 receive interrupt
23 10 XINT1/SINT7 5C Serial port 1 transmit interrupt
24 11 INT3/SINTS 60 External user interrupt #3
25-31 - 64-7F Reserved

B-2

Table B-2. '542 Interrupt Locations and Priorities

'542 Interrupt Locations and Priorities

TRAP/INTR
Number (K) Priority Name Location Function
0 1 RS/SINTR 0 Reset (hardware and software reset)
1 2 NMI/SINT16 4 Nonmaskable interrupt
2 - SINT17 8 Software interrupt #17
3 - SINT18 C Software interrupt #18
4 - SINT19 10 Software interrupt #19
5 - SINT20 14 Software interrupt #20
6 - SINT21 18 Software interrupt #21
7 - SINT22 1C Software interrupt #22
8 - SINT23 20 Software interrupt #23
9 - SINT24 24 Software interrupt #24
10 - SINT25 28 Software interrupt #25
11 - SINT26 2C Software interrupt #26
12 - SINT27 30 Software interrupt #27
13 - SINT28 34 Software interrupt #28
14 - SINT29 38 Software interrupt #29, reserved
15 - SINT30 3C Software interrupt #30, reserved
16 3 INTO/SINTO 40 External user interrupt #0
17 4 INTL/SINT1 44 External user interrupt #1
18 5 INT2/SINT2 48 External user interrupt #2
19 6 TINT/SINT3 4C Internal timer interrupt
20 7 BRINTO/SINT4 50 Buffered serial port receive interrupt
21 8 BXINTO/SINTS 54 Buffered serial port transmit interrupt
22 9 TRINT/SINT6 58 TDM serial port receive interrupt
23 10 TXINT/SINT7 5C TDM serial port transmit interrupt
24 11 INT3/SINT8 60 External user interrupt #3
25 12 HPINT/SINT9 64 HPI interrupt
26-31 - 68—7F Reserved

Interrupt Locations and Priority Tables B-3

'543 Interrupt Locations and Priorities

Table B—3. '543 Interrupt Locations and Priorities

TRAP/INTR
Number (K) Priority Name Location Function
0 1 RS/SINTR 0 Reset (hardware and software reset)
1 2 NMI/SINT16 4 Nonmaskable interrupt
2 - SINT17 8 Software interrupt #17
3 - SINT18 C Software interrupt #18
4 - SINT19 10 Software interrupt #19
5 - SINT20 14 Software interrupt #20
6 - SINT21 18 Software interrupt #21
7 - SINT22 1C Software interrupt #22
8 - SINT23 20 Software interrupt #23
9 - SINT24 24 Software interrupt #24
10 - SINT25 28 Software interrupt #25
11 - SINT26 2C Software interrupt #26
12 - SINT27 30 Software interrupt #27
13 - SINT28 34 Software interrupt #28
14 - SINT29 38 Software interrupt #29, reserved
15 - SINT30 3C Software interrupt #30, reserved
16 3 INTO/SINTO 40 External user interrupt #0
17 4 INTL/SINT1 44 External user interrupt #1
18 5 INT2/SINT2 48 External user interrupt #2
19 6 TINT/SINT3 4C Internal timer interrupt
20 7 BRINTO/SINT4 50 Buffered serial port receive interrupt
21 8 BXINTO/SINT5 54 Buffered serial port transmit interrupt
22 9 TRINT/SINT6 58 TDM serial port receive interrupt
23 10 TXINT/SINT7 5C TDM serial port transmit interrupt
24 11 INT3/SINTS 60 External user interrupt #3
25-31 - 64-7F Reserved

B-4

Table B—4. '545 Interrupt Locations and Priorities

'545 Interrupt Locations and Priorities

TRAP/INTR
Number (K) Priority Name Location Function
0 1 RS/SINTR 0 Reset (hardware and software reset)
1 2 NMI/SINT16 4 Nonmaskable interrupt
2 - SINT17 8 Software interrupt #17
3 - SINT18 C Software interrupt #18
4 - SINT19 10 Software interrupt #19
5 - SINT20 14 Software interrupt #20
6 - SINT21 18 Software interrupt #21
7 - SINT22 1C Software interrupt #22
8 - SINT23 20 Software interrupt #23
9 - SINT24 24 Software interrupt #24
10 - SINT25 28 Software interrupt #25
11 - SINT26 2C Software interrupt #26
12 - SINT27 30 Software interrupt #27
13 - SINT28 34 Software interrupt #28
14 - SINT29 38 Software interrupt #29, reserved
15 - SINT30 3C Software interrupt #30, reserved
16 3 INTO/SINTO 40 External user interrupt #0
17 4 INTL/SINT1 44 External user interrupt #1
18 5 INT2/SINT2 48 External user interrupt #2
19 6 TINT/SINT3 4C Internal timer interrupt
20 7 BRINTO/SINT4 50 Buffered serial port receive interrupt
21 8 BXINTO/SINTS 54 Buffered serial port transmit interrupt
22 9 RINT1/SINT6 58 Serial port receive interrupt
23 10 XINT1/SINT7 5C Serial port transmit interrupt
24 11 INT3/SINT8 60 External user interrupt #3
25 12 HPINT/SINT9 64 HPI interrupt
26-31 - 68—7F Reserved

Interrupt Locations and Priority Tables B-5

'546 Interrupt Locations and Priorities

Table B—-5. '546 Interrupt Locations and Priorities

TRAP/INTR
Number (K) Priority Name Location Function
0 1 RS/SINTR 0 Reset (hardware and software reset)
1 2 NMI/SINT16 4 Nonmaskable interrupt
2 - SINT17 8 Software interrupt #17
3 - SINT18 C Software interrupt #18
4 - SINT19 10 Software interrupt #19
5 - SINT20 14 Software interrupt #20
6 - SINT21 18 Software interrupt #21
7 - SINT22 1C Software interrupt #22
8 - SINT23 20 Software interrupt #23
9 - SINT24 24 Software interrupt #24
10 - SINT25 28 Software interrupt #25
11 - SINT26 2C Software interrupt #26
12 - SINT27 30 Software interrupt #27
13 - SINT28 34 Software interrupt #28
14 - SINT29 38 Software interrupt #29, reserved
15 - SINT30 3C Software interrupt #30, reserved
16 3 INTO/SINTO 40 External user interrupt #0
17 4 INTL/SINT1 44 External user interrupt #1
18 5 INT2/SINT2 48 External user interrupt #2
19 6 TINT/SINT3 4C Internal timer interrupt
20 7 BRINTO/SINT4 50 Buffered serial port receive interrupt
21 8 BXINTO/SINT5 54 Buffered serial port transmit interrupt
22 9 RINT1/SINT6 58 Serial port receive interrupt
23 10 XINT1/SINT7 5C Serial port transmit interrupt
24 11 INT3/SINTS 60 External user interrupt #3
25-31 - 64-7F Reserved

B-6

Table B—6. '548 Interrupt Locations and Priorities

'548 Interrupt Locations and Priorities

TRAP/INTR
Number (K) Priority Name Location Function
0 1 RS/SINTR 0 Reset (hardware and software reset)
1 2 NMI/SINT16 4 Nonmaskable interrupt
2 - SINT17 8 Software interrupt #17
3 - SINT18 C Software interrupt #18
4 - SINT19 10 Software interrupt #19
5 - SINT20 14 Software interrupt #20
6 - SINT21 18 Software interrupt #21
7 - SINT22 1C Software interrupt #22
8 - SINT23 20 Software interrupt #23
9 - SINT24 24 Software interrupt #24
10 - SINT25 28 Software interrupt #25
11 - SINT26 2C Software interrupt #26
12 - SINT27 30 Software interrupt #27
13 - SINT28 34 Software interrupt #28
14 - SINT29 38 Software interrupt #29, reserved
15 - SINT30 3C Software interrupt #30, reserved
16 3 INTO/SINTO 40 External user interrupt #0
17 4 INTL/SINT1 44 External user interrupt #1
18 5 INT2/SINT2 48 External user interrupt #2
19 6 TINT/SINT3 4C Internal timer interrupt
20 7 BRINTO/SINT4 50 Buffered serial port O receive interrupt
21 8 BXINTO/SINT5 54 Buffered serial port O transmit interrupt
22 9 TRINT/SINT6 58 TDM serial port receive interrupt
23 10 TXINT/SINT7 5C TDM serial port transmit interrupt
24 11 INT3/SINT8 60 External user interrupt #3
25 12 HPINT/SINT9 64 HPI interrupt
26 13 BRINT1/SINT10 68 Buffered serial port 1 receive interrupt
27 14 BXINT1/SINT11 6C Buffered serial port 1 transmit interrupt
28-31 - 70-7F Reserved

Interrupt Locations and Priority Tables B-7

'549 Interrupt Locations and Priorities

Table B—7. '549 Interrupt Locations and Priorities

TRAP/INTR
Number (K) Priority Name Location Function

0 1 RS/SINTR 0 Reset (hardware and software reset)

1 2 NMI/SINT16 4 Nonmaskable interrupt

2 - SINT17 8 Software interrupt #17

3 - SINT18 C Software interrupt #18

4 - SINT19 10 Software interrupt #19

5 - SINT20 14 Software interrupt #20

6 - SINT21 18 Software interrupt #21

7 - SINT22 1C Software interrupt #22

8 - SINT23 20 Software interrupt #23

9 - SINT24 24 Software interrupt #24

10 - SINT25 28 Software interrupt #25

11 - SINT26 2C Software interrupt #26

12 - SINT27 30 Software interrupt #27

13 - SINT28 34 Software interrupt #28

14 - SINT29 38 Software interrupt #29

15 - SINT30 3C Software interrupt #30

16 3 INTO/SINTO 40 External user interrupt #0

17 4 INTL/SINT1 44 External user interrupt #1

18 5 INT2/SINT2 48 External user interrupt #2

19 6 TINT/SINT3 4C Internal timer interrupt

20 7 BRINTO/SINT4 50 Buffered serial port O receive interrupt

21 8 BXINTO/SINT5 54 Buffered serial port 0 transmit interrupt

22 9 TRINT/SINT6 58 TDM serial port receive interrupt

23 10 TXINT/SINT7 5C TDM serial port transmit interrupt

24 11 INT3/SINTS 60 External user interrupt #3

25 12 HINT/SINT9 64 HPI interrupt

26 13 BRINT1/SINT10 68 Buffered serial port 1 receive interrupt

27 14 BXINT1/SINT11 6C Buffered serial port 1 transmit interrupt

28 15 BMINTO/SINT12 70 BSP #0 misalignment detection
interrupt

29 16 BMINT1/SINT13 74 BSP #1 misalignment detection
interrupt

30-31 - 78-7TF Reserved

B-8

Appendix C

Interrupt and Status Registers

This appendix shows the bit fields of the '54x interrupt and status registers. The
following table defines terms used in identifying these register fields.

Table C-1. Register Field Terms and Definitions

Term Definition

ARP Auxiliary register pointer
ASM Accumulator shift mode
AVIS Address visibility mode

BMINT1, BMINTO

BRAF

BRINT, BRINT1, BRINTO
BXINT, BXINT1, BXINTO
C

CLKOFF

CMPT

CPL

C16

DP

DROM

FRCT

HM

HPINT

INTM

INTO-INT3

Buffer misalignment interrupts

Block repeat active flag

Buffered serial port receive interrupts
Buffered serial port transmit interrupts
Carry

CLOCKOUT off

Compatibility mode

Compiler mode

Dual 16-bit/double-precision arithmetic mode
Data page pointer

Data ROM

Fractional mode

Hold mode

HPI interrupt

Interrupt mode

External user interrupts

C-1

Interrupt and Status Registers

Table C—1. Register Field Terms and Definitions (Continued)

C-2

Term Definition

IPTR Interrupt vector pointer

MP/MC Microprocessor/microcomputer
OVA Overflow flag A

ovB Overflow flag B

OVLY RAM overlay

OVM Overflow mode

RINT, RINTO, RINT1
Resvd

SMUL

SST

SXM

TC

TINT

TRINT

TXINT

XF

XINT, XINTO, XINT1

Serial port receive interrupts
Reserved

Saturation on multiplication
Saturation on store
Sign-extension mode
Test/control flag

Internal timer interrupt

TDM serial port receive interrupt
TDM serial port transmit interrupt
External flag status

Serial port transmit interrupts

Figure C-1. Interrupt Flag Register (IFR)

Interrupt Flag Register (IFR)

(a) '541 IFR

15-12 11 10 9 8 7 6 5 4 3 2 0

Resvd | Resvd | Resvd | Resvd | INT3 | XINT1 | RINTL | XINTO | RINTO | TINT | INT2 | INT1 | INTO
(b) '542 IFR

15-12 11 10 9 8 7 6 5 4 3 2 0

Resvd | Resvd | Resvd | HPINT | INT3 | TXINT | TRINT | BXINTO | BRINTO | TINT | INT2 | INT1 | INTO
(c) 543 IFR

15-12 11 10 9 8 7 6 5 4 3 2 0

Resvd | Resvd | Resvd | Resvd | INT3 | TXINT | TRINT | BXINTO | BRINTO | TINT | INT2 | INT1 | INTO
(d) 545 IFR

15-12 11 10 9 8 7 6 5 4 3 2 0

Resvd | Resvd | Resvd | HPINT | INT3 | XINT1 | RINT1 | BXINTO | BRINTO | TINT | INT2 | INT1 | INTO
(e) '546 IFR

15-12 11 10 9 8 7 6 5 4 3 2 0

Resvd | Resvd | Resvd | Resvd | INT3 | XINT1 | RINT1 | BXINTO | BRINTO | TINT | INT2 | INT1 | INTO
(f) '548 IFR

15-12 11 10 9 8 7 6 5 4 3 2 0

Resvd | BXINT1 | BRINT1 | HPINT | INT3 | TXINT | TRINT | BXINTO | BRINTO | TINT | INT2 | INT1 | INTO
(g) '549 IFR

15-14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Resvd [BMINTL |BMINTO [BXINTL | BRINTL [HPINT [INT3 | TXINT | TRINT | BXINTO | BRINTO | TINT | INT2 [INTL | INTO

Interrupt and Status Registers C-3

Interrupt Mask Register (IMR)

Figure C-2. Interrupt Mask Register (IMR)

(a) 541 IMR

15-12 11 10 9 8 7 6 5 4 3 2 0

Resvd | Resvd Resvd | Resvd INT3 XINT1 | RINT1 | XINTO RINTO TINT INT2 INT1 INTO
(b) 542 IMR

15-12 11 10 9 8 7 6 5 4 3 2 0

Resvd | Resvd Resvd | HPINT INT3 | TXINT | TRINT | BXINTO | BRINTO | TINT INT2 INT1 INTO
(c) 543 IMR

15-12 1 10 9 8 7 6 5 4 3 2 0

Resvd | Resvd Resvd | Resvd INT3 | TXINT | TRINT | BXINTO | BRINTO | TINT INT2 INT1 INTO
(d) 545 IMR

15-12 11 10 9 8 7 6 5 4 3 2 0

Resvd | Resvd Resvd | HPINT INT3 XINT1 | RINT1 | BXINTO | BRINTO | TINT INT2 INT1 INTO
(e) 546 IMR

15-12 11 10 9 8 7 6 5 4 3 2 0

Resvd | Resvd Resvd | Resvd INT3 XINT1 | RINT1 | BXINTO | BRINTO | TINT INT2 INT1 INTO
() '548 IMR

15-12 11 10 9 8 7 6 5 4 3 2 0

Resvd | BXINT1 | BRINT1 | HPINT INT3 | TXINT | TRINT | BXINTO | BRINTO | TINT INT2 INT1 INTO
(9) 549 IMR

15-14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Resvd |BMINT1 |BMINTO [BXINT1 | BRINT1 |HPINT | INT3 | TXINT | TRINT | BXINTO | BRINTO | TINT [INT2 | INT1 | INTO

C-4

Processor Mode Status Register (PMST) / Status Register O (STO0) / Status Register 1 (ST1)

Figure C-3. Processor Mode Status Register (PMST)

15-7 6 5 4 3 2 1 0

IPTR MP/MC | ovLY | AvIS | DROM | CLKOFF | smuLt | ssTt

T Only on the LP devices; reserved bits on all other devices

Figure C-4. Status Register 0 (STO0)

15-13 12 11 10 9 8-0

ARP TC C OVA ovB DP

Figure C-5. Status Register 1 (ST1)

15 14 13 12 11 10 9 8 7 6 5 4-0

BRAF CPL XF HM INTM 0 OVM SXM C16 FRCT | CMPT ASM

Interrupt and Status Registers C-5

C-6

Appendix D

Glossary

A: See accumulator A.

accumulator: Aregister that stores the results of an operation and provides
an input for subsequent arithmetic logic unit (ALU) operations.

accumulator A: One of two 40-bit registers that store the result of an opera-
tion and provide an input for subsequent arithmetic logic unit (ALU)
operations.

accumulator B: One of two 40-bit registers that store the result of an opera-
tion and provide an input for subsequent arithmetic logic unit (ALU)
operations.

accumulator shift mode bits (ASM): A 5-bit field in ST1 that specifies a
shift value (from —16 to 15) that is used to shift an accumulator value
when executing certain instructions, such as instructions with parallel
loads and stores.

address: The location of a word in memory.

address visibility mode bit (AVIS): A bitin PMST that determines whether
or not the internal program address appears on the device’s external
address bus pins.

addressingmode: The method by which an instruction calculates the loca-
tion of an object in memory.

AG: Accumulator guard bits. An 8-bit register that contains bits 39-32 (the
guard bits) of an accumulator. Both accumulator A and accumulator B
have guards bits.

AH: Accumulator A high word. Bits 31-16 of accumulator A.

AL: Accumulator A low word. Bits15—-0 of accumulator A.

D-1

Glossary

D-2

ALU: Arithmetic logic unit. The part of the CPU that performs arithmetic and
logic operations.

ARO-AR7: See auxiliary registers.
ARAU: See auxiliary register arithmetic unit.
ARP: See auxiliary register pointer.

ASM: See accumulator shift mode bits.

auxiliary register arithmetic unit (ARAU): An unsigned, 16-bit arithmetic
logic unit (ALU) used to calculate indirect addresses using auxiliary reg-
isters.

auxiliary register file: The area in data memory containing the eight 16-bit
auxiliary registers. See also auxiliary registers.

auxiliary register pointer (ARP): A 3-hit field in STO used as a pointer to
the currently-selected auxiliary register, when the device is operating in
'C5x/"C2xx compatibility mode.

auxiliary registers (ARO-ART7): Eight 16-bit registers that are used as
pointers to an address within data space. These registers are operated
on by the auxiliary register arithmetic units (ARAUSs) and are selected by
the auxiliary register pointer (ARP). See also auxiliary register arithmetic
unit.

AVIS: See address visibility mode bit.

B: See accumulator B.
barrel shifter: A unit that rotates bits in a word.

BG: Accumulator B guard bits. An 8-bit register that contains bits 39—32 (the
guard bits) of accumulator B.

BH: Accumulator B high word. Bits 31-16 of accumulator B.
BL: Accumulator B low word. Bits 15-0 of accumulator B.

block-repeat active flag (BRAF): A 1-bit flag in ST1 that indicates whether
or not a block repeat is currently active.

block-repeat counter (BRC): A 16-bit register that specifies the number of
times a block of code is to be repeated when a block repeat is performed.

Glossary

block-repeat end address register (REA): A 16-bit memory-mapped reg-
ister containing the end address of a code segment being repeated.

block-repeat start address register (RSA): A 16-bit memory-mapped reg-
ister containing the start address of a code segment being repeated.

boot: The process of loading a program into program memory.

boot loader: A built-in segment of code that transfers code from an external
source to program memory at power-up.

BRC: See block-repeat counter.

butterfly: A kernel function for computing an N-point fast Fourier transform
(FFT), where N is a power of 2. The combinational pattern of inputs
resembles butterfly wings.

C16: A bitin ST1 that determines whether the ALU operates in dual 16-bit
mode or in double-precision mode.

CAB: C address bus. A bus that carries addresses needed for accessing
data memory.

carry bit (C): A bit used by the ALU in extended arithmetic operations and
accumulator shifts and rotates. The carry bit can be tested by conditional
instructions.

CB: C bus. A bus that carries operands that are read from data memory.
CMPT: See compatibility mode bit.
code: A set of instructions written to perform a task.

cold boot: The process of loading a program into program memory at
power-up.

compatibility mode bit (CMPT): Abitin ST1 that determines whether or not
the auxiliary register pointer (ARP) is used to select an auxiliary register
in single indirect addressing mode.

compiler mode bit (CPL): A bit in ST1 that determines whether the CPU
uses the data page pointer or the stack pointer to generate data memory
addresses in direct addressing mode.

CPL: See compiler mode bit.

Glossary D-3

Glossary

D-4

DAB: D address bus. A bus that carries addresses needed for accessing
data memory.

DAB address register (DAR): A register that holds the address to be put
on the DAB to address data memory for reads via the DB.

DAGEN: See data address generation logic.
DAR: See DAB address register.

DARAM: Dual-access RAM. Memory that can be accessed twice in the
same clock cycle.

data address bus: A group of connections used to route data memory
addresses. The '54x has three 16-bit buses that carry data memory
addresses: CAB, DAB, and EAB.

data address generation logic (DAGEN): Logic circuitry that generates
the addresses for data memory reads and writes. See also program ad-
dress generation logic.

data bus: A group of connections used to route data. The '54x has three
16-bit data buses: CB, DB, and EB.

datamemory: Amemory region used for storing and manipulating data. Ad-
dresses 00h—1Fh of data memory contain CPU registers. Addresses
20h-5Fh of data memory contain peripheral registers.

data page pointer (DP): A 9-bit field in STO that specifies which of 512
128-word pages is currently selected for direct address generation. DP
provides the nine MSBs of the data-memory address; the data memory
address provides the lower seven bits. See also direct memory address.

data ROM bit (DROM): A bit in processor mode status register (PMST) that
determines whether part of the on-chip ROM is mapped into program
space.

DB: D bus. A bus that carries operands that are read from data memory.

direct memory address (dma, DMA): The seven LSBs of a direct-
addressed instruction that are concatenated with the data page pointer
(DP) to generate the entire data memory address. See also data page
pointer.

dma: See direct memory address.

Glossary

DP: See data page pointer.
DROM: See data ROM bit.

EAB address register (EAR): Aregister that holds the address to be put on
the EAB to address data memory for reads via the EB.

EAR: See EAB address register.
EB: E bus. A bus that carries data to be written to memory.

exponent (EXP) encoder: A hardware device that computes the exponent
value of the accumulator.

fast return register (RTN): A 16-bit register used to hold the return address
for the fast return from interrupt (RETF[D]) instruction.

fractional mode bit (FRCT): A bit in status register ST1 that determines
whether or not the multiplier output is left-shifted by one bit.

FRCT: See fractional mode bit.

HM: See hold mode bit.

hold mode bit (HM): Abitin status register ST1 that determines whether the
CPU enters the hold state in normal mode or concurrent mode.

IFR: See interrupt flag register.
IMR: See interrupt mask register.
instruction register (IR): A 16-bitregister used to hold a fetched instruction.

interrupt: A condition caused by internal hardware, an event external to the
CPU, or by a previously executed instruction that forces the current
program to be suspended and causes the processor to execute an inter-
rupt service routine corresponding to the interrupt.

Glossary D-5

Glossary

D-6

interrupt flag register (IFR): A 16-bit memory-mapped register used to
identify and clear active interrupts.

interrupt mode bit (INTM): A bit in status register ST1 that globally masks
or enables all interrupts.

interrupt mask register (IMR): A 16-bit memory-mapped register used to
enable or disable external and internal interrupts. A 1 written to any IMR
bit position enables the corresponding interrupt (when INTM = 0).

interrupt service routine (ISR): A module of code that is executed in
response to a hardware or software interrupt.

INTM: See interrupt mode bit.

IPTR: Interrupt vector pointer. A 9-bit field in the processor mode status
register (PMST) that points to the 128-word page where interrupt vectors
reside.

IR: See instruction register.

ISR: See interrupt service routine.

latency: The delay between when a condition occurs and when the device
reacts to the condition. Also, in a pipeline, the delay between the execu-
tion of two instructions that is necessary to ensure that the values used
by the second instruction are correct.

LSB: Least significant bit. The lowest order bit in a word.

memory-mapped register (MMR): The '54x processor registers mapped
into page 0 of the data memory space.

microcomputer mode: A mode in which the on-chip ROM is enabled and
addressable.

microprocessor mode: A mode in which the on-chip ROM is disabled.

micro stack: A stack that provides temporary storage for the address of the
nextinstruction to be fetched when the program address generation logic
is used to generate sequential addresses in data space.

MP/MCbit: Abitin the processor mode status register (PMST) that indicates
whether the processor is operating in microprocessor or microcomputer
mode. See also microcomputer mode; microprocessor mode.

MSB: Most significant bit. The highest order bit in a word.

Glossary

OVA: Overflow flag A. A bit in status register STO that indicates the overflow
condition of accumulator A.

OVB: Overflow flag B. A bit status register STO that indicates the overflow
condition of accumulator B.

overflow: A condition in which the result of an arithmetic operation exceeds
the capacity of the register used to hold that result.

overflow flag (OVA, OVB): Aflag thatindicates whether or not an arithmetic
operation has exceeded the capacity of the corresponding accumulator.
See also OVA and OVB.

overflow mode bit (OVM): Abitin status register ST1 that specifies how the
ALU handles an overflow after an operation.

OVLY: See RAM overlay bit.

OVM: See overflow mode bit.

PAB: Program address bus. A 16-bit bus that provides the address for
program memory reads and writes.

PAGEN: See program address generation logic.
PAR: See program address register.

PB: Program bus. A bus that carries the instruction code and immediate
operands from program memory.

PC: See program counter.
pipeline: A method of executing instructions in an assembly-line fashion.

pmad: Program-memory address. Al16-bit immediate program-memory
address.

PMST: See processor mode status register.
pop: Action of removing a word from a stack.
processor mode status register (PMST): A 16-bit status register that

controls the memory configuration of the device. See also STO; ST1.

Glossary D-7

Glossary

D-8

program address generation logic (PAGEN): Logic circuitry that gener-
ates the address for program memory reads and writes, and the address
for data memory in instructions that require two data operands. This
circuitry can generate one address per machine cycle. See also data
address generation logic.

program address register (PAR): A register that holds the address to be
put on the PAB to address memory for reads via the PB.

program controller: Logic circuitry that decodes instructions, manages the
pipeline, stores status of operations, and decodes conditional opera-
tions.

program counter (PC): A 16-bit register that indicates the location of the
next instruction to be executed.

program counter extension register (XPC): A register that contains the
upper 7 bits of the current program memory address.

programdata bus (PB): Abusthat carries the instruction code and immedi-
ate operands from program memory.

program memory: A memory region used for storing and executing
programs.

push: Action of placing a word onto a stack.

RAM overlay bit (OVLY): Abitin the processor mode status register PMST
that determines whether or not on-chip dual-access RAM is mapped into
the program/data space.

RC: See repeat counter.
REA: See block-repeat end address.

register: A group of bits used for temporarily holding data or for controlling
or specifying the status of a device.

repeat counter (RC): A 16-bit register used to specify the number of times
a single instruction is executed.

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

RSA: See block-repeat start address.

RTN: See fast return register.

Glossary

SARAM: Single-access RAM. Memory that only can be read from or writ-
ten during one clock cycle.

shifter: A hardware unit that shifts bits in a word to the left or to the right.

sign-control logic: Circuitry used to extend data bits (signed/unsigned) to
match the input data format of the multiplier, ALU, and shifter.

sign extension: An operation that fills the high order bits of a number with
the sign bit.

sign-extension mode bit (SXM): A bit in status register ST1 that enables
sign extension in CPU operations.

SINT: See software interrupt.

software interrupt: An interrupt caused by the execution of an INTR or
TRAP instruction.

SP: See stack pointer.

STO: Status register 0. A 16-bit register that contains '54x status and
control bits. See also PMST; ST1.

ST1: Status register 1. A16-bit register that contains '54x status and
control bits. See also PMST; STO.

stack: A block of memory used for storing return addresses for subroutines
and interrupt service routines and for storing data.

stack pointer (SP): Aregister that always points to the last element pushed
onto the stack.

SXM: See sign-extension mode bit.

TC: See test/control flag bit.

temporary register (T): A 16-bit register that holds one of the operands for
multiply and store instructions, the dynamic shift count for the add and
subtract instructions, or the dynamic bit position for the bit test instruc-
tions.

test/control flag bit (TC): A bitin status register STO that is affected by test
operations.

transition register (TRN): A 16-bit register that holds the transition decision
for the path to new metrics to perform the Viterbi algorithm.

Glossary D-9

Glossary

D-10

warm boot: The process by which the processor transfers control to the
entry address of a previously-loaded program.

XF: XF status flag. A bitin status register ST1 that indicates the status of the
XF pin.

XPC: See program counter extension register.

ZA: Zero detect bit A. A signal that indicates when accumulator A contains
ao.

ZB: Zero detect bit B. A signal that indicates when accumulator B contains
ao.

zero detect: See ZA and ZB.

zerofill: A method of filling the low- or high-order bits with zeros when load-
ing a 16-bit number into a 32-bit field.

Page:

2-12

2-14

4-18

4-19

Appendix E

Summary of Updates in This Document

This appendix provides a summary of the updates in this version of the docu-
ment. Updates within paragraphs appear in a bold typeface .

Changed or Added:

Changed following Cycle in Table 2—-16, Repeat Instructions:

Syntax Cycles t

RPT Smem 3

Changed following Syntax in Table 2-19, Load Instructions:

Syntax Expression

LD src[, SHIFT], dst dst = src << SHIFT

Changed contents of accumulator B (after instruction) in Example 3to 00 0045 7A00.

Changed Condition Code for condition TC in Operands:

Condition
Cond Description Code
TC TC=1 0011 0000

Changed description for Group 1:

Groupl: You can select up to two conditions. Each of these conditions
must be from a different category (category A or B); you cannot
have two conditions from the same category. For example, you
cantest EQ and OV at the same time but you cannottest GT and
NEQ at the same time. The accumulator must be the same for
both conditions; you cannot test conditions for both accu-
mulators with the same instruction. For example, you can
test AGT and AOV atthe same time, but you cannottest AGT
and BOV at the same time.

E-1

Summary of Updates in This Document

Page:

4-28

4-29

4-30

4-56

4-58

4-66

4-95

4-96

4-133

E-2

Changed or Added:
Changed syntax in Example 2:

CALLD 1000h
ANDM#4444h, *AR1+

Changed Condition Code for condition TC in Operands:

Condition
Cond Description Code
TC TC=1 0011 0000

Changed description for Group 1:

Groupl: You can select up to two conditions. Each of these conditions
must be from a different category (category A or B); you cannot
have two conditions from the same category. For example, you
cantest EQ and OV at the same time but you cannot test GT and
NEQ atthe same time. The accumulator must be the same for
both conditions; you cannot test conditions for both accu-
mulators with the same instruction. For example, you can
test AGT and AOV atthe same time, butyou cannottest AGT
and BOV at the same time.

Changed syntax in Example 2:

FCALAD B
ANDM#4444h, *AR1+

Changed syntax in Example 2:

FCALLD 301000h
ANDM #4444h, *AR1+

Changed syntax 10:
10: LD src[, SHIFT], dst

Changed contents of accumulator B (after instruction) in Example 2to FF FODA OFAO.
Changed contents of accumulator B (after instruction) in Example 4 to FF FODA 0000.

Changed Condition Code for condition TC in Operands:

Condition
Cond Description Code
TC TC=1 0011 0000

Summary of Updates in This Document

Page: Changed or Added:
4-134 Changed description for Group1.:

Groupl: You can select up to two conditions. Each of these conditions
must be from a different category (category A or B); you cannot
have two conditions from the same category. For example, you
cantest EQ and OV at the same time but you cannottest GT and
NEQ at the same time. The accumulator must be the same for
both conditions; you cannot test conditions for both accu-
mulators with the same instruction. For example, you can
test AGT and AOV atthe same time, but you cannottest AGT
and BOV at the same time.

4-136 Changed Description and added '549:

This instruction transfers a word from a program-memory location specified
by accumulator A to a data-memory location specified by Smem. Once the
repeat pipeline is started, the instruction becomes a single-cycle instruction.
Accumulator A defines the program-memory location according to the specific
device, as follows:

'541-'546 '548, '549

A(15-0) A(22-0)

4-146 Changed Cycles:

Syntax 1: 3 cycles
Syntax 2: 1 cycle
Syntax 3: 2 cycles

4-196 Added '549 to Description:

This instruction transfers a word from a data-memory location specified by
Smem to a program-memory location. The program-memory address is
defined by accumulator A as follows, depending on the specific device.

'541-'546 '548, '549
A(15-0) A(22-0)
4-198 Changed Condition Code for condition TC in Operands:
Condition
Cond Description Code
TC TC=1 0011 0000

Summary of Updates in This Document E-3

Summary of Updates in This Document

Page: Changed or Added:
4-199 Changed description for Group1:
Groupl: You can select up to two conditions. Each of these conditions

must be from a different category (category A or B); you cannot
have two conditions from the same category. For example, you
cantest EQ and OV at the same time but you cannottest GT and
NEQ at the same time. The accumulator must be the same for
both conditions; you cannot test conditions for both accu-
mulators with the same instruction. For example, you can
testAGT and AOV atthe same time, but you cannottest AGT
and BOV at the same time.

A-1 Changed description for Group1:

Groupl:

You can select up to two conditions. Each of these conditions
must be from a different category (category A or B); you cannot
have two conditions from the same category. For example, you
cantest EQ and OV at the same time but you cannot test GT and
NEQ at the same time. The accumulator must be the same for
both conditions; you cannot test conditions for both accu-
mulators with the same instruction. For example, you can
testAGT and AOV atthe same time, but you cannottest AGT
and BOV at the same time.

Summary of Updates in This Document

Page: Changed or Added:
B-8 Added Table B-7, 549 Interrupt Locations and Priorities.:
TRAP/INTR
Number (K) Priority Name Location Function

0 1 RS/SINTR 0 Reset (hardware and software reset)

1 2 NMI/SINT16 4 Nonmaskable interrupt

2 - SINT17 8 Software interrupt #17

3 - SINT18 C Software interrupt #18

4 - SINT19 10 Software interrupt #19

5 - SINT20 14 Software interrupt #20

6 - SINT21 18 Software interrupt #21

7 - SINT22 1C Software interrupt #22

8 - SINT23 20 Software interrupt #23

9 - SINT24 24 Software interrupt #24

10 - SINT25 28 Software interrupt #25

11 - SINT26 2C Software interrupt #26

12 - SINT27 30 Software interrupt #27

13 - SINT28 34 Software interrupt #28

14 - SINT29 38 Software interrupt #29

15 - SINT30 3C Software interrupt #30

16 3 INTO/SINTO 40 External user interrupt #0

17 4 INTL/SINT1 44 External user interrupt #1

18 5 INT2/SINT2 48 External user interrupt #2

19 6 TINT/SINT3 4C Internal timer interrupt

20 7 BRINTO/SINT4 50 Buffered serial port O receive interrupt

21 8 BXINTO/SINTS 54 Buffered serial port O transmit interrupt

22 9 TRINT/SINT6 58 TDM serial port receive interrupt

23 10 TXINT/SINT7 5C TDM serial port transmit interrupt

24 11 INT3/SINT8 60 External user interrupt #3

25 12 HINT/SINT9 64 HPI interrupt

26 13 BRINT1/SINT10 68 Buffered serial port 1 receive interrupt

27 14 BXINT1/SINT11 6C Buffered serial port 1 transmit interrupt

28 15 BMINTO/SINT12 70 BSP #0 misalignment detection
interrupt

29 16 BMINT1/SINT13 74 BSP #1 misalignment detection
interrupt

30-31 - 78-7F Reserved

Summary of Updates in This Document E-5

Summary of Updates in This Document

Page: Changed or Added:
C-1 Added BMINT1, BMINTO to Table C-1, Register Field Terms and Definitions:
Term Definition
BMINT1, BMINTO Buffer misalignment interrupts
C-3 Added '549 IFR to Figure C-1, Interrupt Flag Register (IFR):
(9) '549 IFR
15-14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Resvd [BMINT1 |BMINTO | BXINTL |BRINTL [HPINT | INT3 | TXINT | TRINT | BXINTO | BRINTO | TINT [INT2 [INTL | INTO
C-4 Added '549 IMR to Figure C-2, Interrupt Mask Register (IMR):
(9) '549 IMR
15-14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Resvd |BMINT1 [BMINTO | BXINT1 | BRINTL |HPINT | INT3 [TXINT |TRINT | BXINTO [BRINTO | TINT [INT2 | INTL | INTO
Reference Card 1, page 5
Changed following Cycle in Repeat Instructions:
Syntax Cycles T
RPT Smem 3
Reference Card 1, page 6
Changed following Syntax in Load Instructions:
Syntax Expression

LD src[, SHIFT], dst

dst = src << SHIFT

Summary of Updates in This Document

Page: Changed or Added:
Reference Card 2, page 2

Changed description for Group1:

Groupl: You can select up to two conditions. Each of these conditions
must be from a different category (category A or B); you cannot
have two conditions from the same category. For example, you
cantest EQ and OV atthe same time but you cannottest GT and
NEQ at the same time. The accumulator must be the same for
both conditions; you cannot test conditions for both accu-
mulators with the same instruction. For example, you can
test AGT and AOV atthe same time, but you cannottest AGT
and BOV at the same time.

Reference Card 2, page 3
Changed following Description in CPU Memory-Mapped Registers:

Address Name Description
1E XPC Program counter extension register ('548
and '549)

Reference Card 2, page 4
Changed title and note of '548 Interrupt Registers:
'548 /'549

1 10 9 8 7 6 5 4 3 2 1 0
|BXINT1|BRINT1 |HPINT |INT3 |TXINT |TRINT |BXINTO |BRINTO |TINT|INT2 |INT1 |INTO|

Note: Bits 15-12 are reserved on '548.
On '549:
Bits 15—14 are reserved
Bit 13 is BMINT1
Bit 12 is BMINTO

Reference Card 2, page 8

Changed title of table and added locations and note:

'548 /'549
TRAP/INTR
Number (K) Priority Name Location
28t 15 BMINTO/SINT12 70
29T 16 BMINT1/SINT13 74
30-31 - Reserved 78-7TF

T TRAP/INTR Numbers 28 and 29 are reserved on '548.

Summary of Updates in This Document E-7

E-8

ABDST instruction 4-2

ABS instruction 4-3

accumulator A D-1

accumulator A high word (AH) D-1

accumulator A low word (AL) D-1

accumulator B D-1

accumulator B guard bits (BG) D-2

accumulator B high word (BH) D-2

accumulator B low word (BL) D-2

accumulator guard bits (AG) D-1

accumulator shift mode (ASM) D-1

accumulators D-1

ADD instruction 4-4

add instructions 2-2 to 2-3

ADDC instruction 4-8

ADDM instruction 4-9

address D-1

address visibility mode bit (AVIS) D-1

addressing mode D-1

ADDS instruction 4-10

AND instruction 4-11

AND instructions 2-8

ANDM instruction 4-13

application-specific instructions 2-7

ARO-AR7. See auxiliary registers

ARAU. See auxiliary register arithmetic unit

arithmetic logic unit (ALU) D-2

arithmetic operation instructions 2-2
add instructions 2-2 to 2-3
application-specific instructions 2-7
double (32-bit operand) instructions 2-6

multiply instructions 2-4
multiply-accumulate instructions 2-4 to 2-5

Index

multiply-subtract instructions 2-4 to 2-5
subtract instructions 2-3 to 2-4

ARP. See auxiliary register pointer

ASM. See accumulator shift mode bits
assembly language instructions 4-1
auxiliary register arithmetic unit (ARAU) D-2
auxiliary register file D-2

auxiliary register pointer (ARP) D-2
auxiliary registers (ARO-AR7) D-2

AVIS. See address visibility mode bit

B. See accumulator B

B instruction 4-14

BACC instruction 4-15

BACCD instruction 4-15

BANZ instruction 4-16

BANZD instruction 4-16

barrel shifter D-2

BC instruction 4-18

BCD instruction 4-18

BD instruction 4-14

BIT instruction 4-21

BITF instruction 4-22

BITT instruction 4-23
block-repeat active flag (BRAF) D-2
block-repeat counter (BRC) D-2
block-repeat end address register (REA) D-3
block-repeat start address register (RSA) D-3
boot D-3

boot loader D-3

branch instructions 2-10

BRC. See block-repeat counter
butterfly D-3

Index-1

Index

C address bus (CAB) D-3
C bus (CB), definition D-3
Cl6 D-3
CALA instruction 4-25
CALAD instruction 4-25
CALL instruction 4-27
call instructions 2-11
CALLD instruction 4-27
carry bit (C), definiton D-3
CC instruction 4-29
CCD instruction 4-29
CMPL instruction 4-32
CMPM instruction 4-33
CMPR instruction 4-34
CMPS instruction 4-35
CMPT. See compatibility mode bit
code, definition D-3
cold boot, definition D-3
compatibility mode bit (CMPT), definition D-3
compiler mode bit (CPL), definition D-3
conditional instructions
conditions A-2
grouping of conditions A-3
conditional store instructions 2-16
CPL. See compiler mode bit

D address bus (DAB), definition D-4

D bus (DB), definition D-4

DAB address register (DAR), definition D-4

DADD instruction 4-37

DADST instruction 4-39

DAGEN. See data address generation logic

DAR. See DAB address register

DARAM 3-1

data address bus, definition D-4

data address generation logic (DAGEN),
definition D-4

data bus, definition D-4

data memory, definition D-4

data page pointer (DP), definition D-4

Index-2

data ROM bit (DROM), definition D-4
DELAY instruction 4-41

direct memory address, definition D-4
DLD instruction 4-42

double (32-bit operand) instructions 2-6
DP. See data page pointer

DROM 3-1
See also data ROM bit

DRSUB instruction 4-43

DSADT instruction 4-45

DST instruction 4-47

DSUB instruction 4-48

DSUBT instruction 4-50

dual-access RAM (DARAM), definition D-4

E bus (EB), definition D-5

EAB address register (EAR), definition D-5
EAR. See EAB address register

EXP encoder, definition D-5

EXP instruction 4-52

exponent encoder, definition D-5

fast return register (RTN), definition D-5
FB instruction 4-53

FBACC instruction 4-54

FBACCD instruction 4-54

FBD instruction 4-53

FCALA instruction 4-55

FCALAD instruction 4-55

FCALL instruction 4-57

FCALLD instruction 4-57

finite impule response (FIRS) filter instruction 4-59
FIRS instruction 4-59

fractional mode bit (FRCT), definition D-5
FRAME instruction 4-60

FRCT. See fractional mode bit

FRET instruction 4-61

FRETD instruction 4-61

FRETE instruction 4-62

FRETED instruction 4-62

HM. See hold mode bit
hold mode bit (HM), definition D-5

IDLE instruction 4-63

IFR. See interrupt flag register

IMR. See interrupt mask register
instruction cycles, assumptions 3-2
instruction register (IR), definition D-5

instruction set
abbreviations 1-2
classes 3-31t03-72
cycle tables 3-3to 3-72
example description 1-9
notations 1-7
opcode abbreviations 1-5
opcode symbols 1-5
operators 1-8
symbols 1-2

instruction set summary
add instructions 2-2 to 2-3
AND instructions 2-8
application-specific instructions 2-7
branch instructions 2-10
call instructions 2-11
conditional store instructions 2-16
double (32-bit operand) instructions 2-6
interrupt instructions 2-11
load instructions 2-14 to 2-15
miscellaneous load-type and store-type
instructions 2-18
miscellaneous program control
instructions 2-13
multiply instructions 2-4
multiply-accumulate instructions 2-4 to 2-5
multiply-subtract instructions 2-4 to 2-5
OR instructions 2-8
parallel load and multiply instructions 2-16
parallel load and store instructions 2-16
parallel store and add/subtract instructions 2-17
parallel store and multiply instructions 2-17
repeat instructions 2-12
return instructions 2-12
shift instructions 2-9
stack-manipulating instructions 2-13

Index

store instructions 2-15
subtract instructions 2-3 to 2-4
test instructions 2-9

XOR instructions 2-9

interrupt
definition D-5
locations B-1
priorities B-1
interrupt flag register (IFR)
definition D-6
figure C-3
interrupt instructions 2-11
interrupt mask register (IMR)
definition D-6
figure C-4
interrupt mode bit (INTM), definition D-6
interrupt service routine (ISR), definition D-6
interrupt vector pointer (IPTR), definition D-6
INTM. See interrupt mode bit
INTR instruction 4-65
IR. See instruction register
ISR. See interrupt service routine

latency, definition D-6

LD instruction 4-66, 4-70
LD||MAC instruction 4-74
LD|IMACR instruction 4-74
LDJ||MAS instruction 4-76
LD||MASR instruction 4-76
LDM instruction 4-73
LDR instruction 4-78
LDU instruction 4-79
least significant bit (LSB), definition D-6
LMS instruction 4-80

load and store operation instructions 2-14
conditional store instructions 2-16
load instructions 2-14 to 2-15
miscellaneous instructions 2-18
parallel load and multiply instructions 2-16
parallel load and store instructions 2-16
parallel store and add/subtract instructions 2-17
parallel store and multiply instructions 2-17
store instructions 2-15

load instructions 2-14 to 2-15

Index-3

Index

logical operation instructions 2-8
AND instructions 2-8
OR instructions 2-8
shift instructions 2-9
test instructions 2-9
XOR instructions 2-9

LTD instruction 4-81

MAC instruction 4-82

MACA instruction 4-85

MACAR instruction 4-85

MACD instruction 4-87

MACP instruction 4-89

MACR instruction 4-82

MACSU instruction 4-91

MAR instruction 4-92

MAS instruction 4-94

MASA instruction 4-97

MASAR instruction 4-97

MASR instruction 4-94

MAX instruction 4-99
memory-mapped register (MMR), definition D-6
micro stack, definition D-6
microcomputer mode, definition D-6
microprocessor mode, definition D-6
MIN instruction 4-100

miscellaneous load-type and store-type
instructions 2-18

miscellaneous program control instructions 2-13

MMR 3-1

most significant bit (MSB), definition D-6

MP/MC bit, definiton D-6

MPY instruction 4-101

MPYA instruction 4-104

MPYR instruction 4-101

MPYU instruction 4-106

multi-cycle instructions, transformed to
single-cycle 2-19

multiply instructions 2-4

multiply-accumulate instructions 2-4 to 2-5

multiply-subtract instructions 2-4 to 2-5

MVDD instruction 4-107

MVDK instruction 4-108

Index-4

MVDM instruction 4-110
MVDP instruction 4-111
MVKD instruction 4-113
MVMD instruction 4-115
MVMM instruction 4-116
MVPD instruction 4-117

NEG instruction 4-119
nonrepeatable instructions 2-20
NOP instruction 4-121

NORM instruction 4-122

OR instruction 4-123

OR instructions 2-8

ORM instruction 4-125

OVA. See overflow flag A

OVB. See overflow flag B

overflow, definition D-7

overflow flag, definition D-7
overflow flag A (OVA), definition D-7
overflow flag B (OVB), definition D-7
overflow mode bit (OVM), definition D-7
OVLY. See RAM overlay bit

OVM. See overflow mode bit

PAGEN. See program address generation logic
PAR. See program address register

parallel load and multiply instructions 2-16
parallel load and store instructions 2-16
parallel store and add/subtract instructions 2-17
parallel store and multiply instructions 2-17
PC. See program counter

pipeline, definition D-7

pmad, definition D-7

PMST. See processor mode status register
POLY instruction 4-126

pop, definition D-7

POPD instruction 4-127

POPM instruction 4-128

PORTR instruction 4-129
PORTW instruction 4-130
processor mode status register (PMST)
definition D-7
figure C-5
program address bus (PAB), definition D-7
program address generation logic (PAGEN),
definition D-8
program address register (PAR), definition D-8
program bus (PB), definition D-7
program control operation instructions 2-10
branch instructions 2-10
call instructions 2-11
interrupt instructions 2-11
miscellaneous instructions 2-13
repeat instructions 2-12
return instructions 2-12
stack-manipulating instructions 2-13

program controller, definition D-8

program counter (PC), definition D-8

program counter extension (XPC), definition D-8
program data bus (PB), definition D-8

program memory, definition D-8

program memory address (pmad), definition D-7
PROM 3-1

PSHD instruction 4-131

PSHM instruction 4-132

push, definition D-8

RAM overlay bit (OVLY), definition D-8
RC. See repeat counter
RC instruction 4-133
RCD instruction 4-133
REA. See block-repeat end address
READA instruction 4-136
register, definition D-8
repeat counter (RC), definition D-8
repeat instructions 2-12
repeat operation 2-19
handling multicycle instructions 2-19
nonrepeatable instructions 2-20
reset, definiton D-8

RESET instruction 4-138

Index

RET instruction 4-139
RETD instruction 4-139
RETE instruction 4-140
RETED instruction 4-140
RETF instruction 4-141
RETFD instruction 4-141
return instructions 2-12
RND instruction 4-142
ROL instruction 4-143
ROLTC instruction 4-144
ROM 3-1

ROR instruction 4-145
RPT instruction 4-146
RPTB instruction 4-148
RPTBD instruction 4-148
RPTZ instruction 4-150
RSA. See block-repeat start address
RSBX instruction 4-151
RTN. See fast return register

SACCD instruction 4-152
SARAM 3-1

SAT instruction 4-154

SFTA instruction 4-155

SFTC instruction 4-157

SFTL instruction 4-158

shift instructions 2-9

shifter, definition D-9

sign control logic, definition D-9
sign extension, definition D-9
sign-extension mode bit (SXM), definition D-9
single-access RAM (SARAM), definition D-9
SINT. See software interrupt
software interrupt, definition D-9
SP. See stack pointer

SQDST instruction 4-160
SQUR instruction 4-161
SQURA instruction 4-163
SQURS instruction 4-164
SRCCD instruction 4-165
SSBX instruction 4-166

ST instruction 4-167

Index-5

Index

ST||ADD instruction 4-177
ST||LD instruction 4-178
ST||MAC instruction 4-180
ST|IMACR instruction 4-180
ST||MAS instruction 4-182
ST||IMASR instruction 4-182
ST||MPY instruction 4-184
ST||SUB instruction 4-185
STO, definition. See status register 0
ST1, definition. See status register 1
stack, definition D-9
stack pointer (SP), definition D-9
stack-manipulating instructions 2-13
status register 0 (STO)
definition. See PMST, ST1
figure C-5
status register 1 (ST1)
definition. See PMST, STO
figure C-5
STH instruction 4-169
STL instruction 4-172
STLM instruction 4-175
STM instruction 4-176
store instructions 2-15
STRCD instruction 4-186
SUB instruction 4-187
SUBB instruction 4-191
SUBC instruction 4-192
SUBS instruction 4-194
subtract instructions 2-3 to 2-4
SXM. See sign-extension mode bit

Index-6

TC. See test/control flag bit

temporary register (T), definition D-9
test instructions 2-9

test/control flag bit (TC), definition D-9
transition register (TRN), definition D-9
TRAP instruction 4-195

warm boot, definition D-10
WRITA instruction 4-196

XC instruction 4-198

XF status flag (XF), definition D-10

XOR instruction 4-201

XOR instructions 2-9

XORM instruction 4-203

XPC. See program counter extension register

zero detect. See zero detect bit A; zero detect bit B
zero detect bit A (ZA), definition D-10

zero detect bit B (ZB), definition D-10

zero fill, definition D-10

