Project

# Title Team Members TA Documents Sponsor
3 Monitor for Dough and Sourdough Starter
Honorable Mention
Abhitya Krishnaraj
Alec Thompson
Jake Hayes
Tianxiang Zheng design_document2.pdf
final_paper1.pdf
photo1.png
photo2.jpg
presentation1.pptx
proposal2.pdf
video
Team Members:
- Jake Hayes (jhayes)
- Abhitya Krishnaraj (abhitya2)
- Alec Thompson (alect3)

# Problem

Making bread at home, especially sourdough, has become very popular because it is an affordable way to get fresh-baked bread that's free of preservatives and other ingredients that many people are not comfortable with. Sourdough also has other health benefits such as a lower glycemic index and greater bioavailability of nutrients.

However, the bulk fermentation process (letting the dough rise) can be tricky and requires a lot of attention, which leads to many people giving up on making sourdough. Ideally, the dough should be kept at around 80 degrees F, which is warmer than most people keep their homes, so many people try to find a warm place in their home such as in an oven with a light on; but it's hard to know if the dough is kept at a good temperature. Other steps need to be taken when the dough has risen enough, but rise time varies greatly, so you can't just set a timer; and if you wait too long the dough can start to shrink again. In the case of activating dehydrated sourdough starter, this rise and fall is normal and must happen several times; and its peak volume is what tells you when it's ready to use.

# Solution

Our solution is to design a device with a distance sensor (probably ultrasonic) and a temperature sensor that can be attached to the underside of most types of lids, probably with magnets. The sensors would be controlled with a microcontroller; and a display (probably LCD) would show the minimum, current, and maximum heights of the dough along with the temperature. This way the user can see at a glance how much the dough has risen, whether it has already peaked and started to shrink, and whether the temperature is acceptable or not. There is no need to remove it from its warm place and uncover it, introducing cold air; and there is no need to puncture it to measure its height or use some other awkward method.

The device would require a PCB, microcontroller, sensors, display, and maybe some type of wireless communication. Other features could be added, such as an audible alarm or a graph of dough height and/or temperature over time.

# Solution Components

## Height and Temperature Sensors

Sensors would be placed on the part of the device that attaches to the underside of a lid. A temperature sensor would measure the ambient temperature near the dough to ensure the dough is kept at an acceptable temperature. A proximity sensor or sensors would first measure the height of the container, then begin measuring the height of the dough periodically. If we can achieve acceptable accuracy with one distance sensor, that would be ideal; otherwise we could use 2-4 sensors.

Possible temperature sensor: [Texas Instruments LM61BIZ/LFT3](https://www.digikey.com/en/products/detail/texas-instruments/LM61BIZ%252FLFT3/12324753)

Proximity sensors could be ultrasonic, infrared LED, or VCSEL.\
Ultrasonic: [Adafruit ULTRASONIC SENSOR SONAR DISTANCE 3942](https://www.digikey.com/en/products/detail/adafruit-industries-llc/3942/9658069)\
IR LED: [Vishay VCNL3020-GS18](https://www.mouser.com/ProductDetail/Vishay-Semiconductors/VCNL3020-GS18?qs=5csRq1wdUj612SFHAvx1XQ%3D%3D)\
VCSEL: [Vishay VCNL36826S](https://www.mouser.com/ProductDetail/Vishay-Semiconductors/VCNL36826S?qs=d0WKAl%252BL4KbhexPI0ncp8A%3D%3D)

## MCU

An MCU reads data from the sensors and displays it in an easily understandable format on the LCD display. It also reads input from the user interface and adjusts the operation and/or output accordingly. For example, when the user presses the button to reset the minimum dough height, the MCU sends a signal to the proximity sensor to measure the distance, then the MCU reads the data, calculates the height, and makes the display show it as the minimum height.

Possible MCU: [STM32F303K8T6TR](https://www.mouser.com/ProductDetail/STMicroelectronics/STM32F303K8T6TR?qs=sPbYRqrBIVk%252Bs3Q4t9a02w%3D%3D)

## Digital Display
- A [4x16 Character LCD](https://newhavendisplay.com/4x16-character-lcd-stn-blue-display-with-white-side-backlight/) would attach to the top of the lid and display the lowest height, current height, maximum height, and temperature.

## User Interface

The UI would attach to the top of the lid and consist of a number of simple switches and push buttons to control the device. For example, a switch to turn the device on and off, a button to measure the height of the container, a button to reset the minimum dough height, etc.

Possible switch: [E-Switch RA1113112R](https://www.digikey.com/en/products/detail/e-switch/RA1113112R/3778055)\
Possible button: [CUI Devices TS02-66-50-BK-160-LCR-D](https://www.digikey.com/en/products/detail/cui-devices/TS02-66-50-BK-160-LCR-D/15634352)

## Power
- Rechargeable Lithium Ion battery capable of staying on for a few rounds of dough ([2000 mAh](https://www.microcenter.com/product/503621/Lithium_Ion_Battery_-_37v_2000mAh) or more) along with a USB charging port and the necessary circuitry to charge the battery. The two halves of the device (top and underside of lid) would probably be wired together to share power and send and receive data.

## (stretch goal) Wireless Notification System
- Push notifications to a user’s phone whenever the dough has peaked. This would likely be an add-on achieved with a Raspberry Pi Zero, Gotify, and Tailscale.

# Criterion For Success

- Charge the battery and operate on battery power for at least 10 hours, but ideally a few days for wider use cases and convenience.
- Accurately read (within a centimeter) and store distance values, convert distance to dough height, and display the minimum, maximum, and current height values on a display.
- Accurately read and report the temperature to the display.
- (stretch goal) Inform the user when the dough has peaked (visual, audio, or app based).

Decentralized Systems for Ground & Arial Vehicles (DSGAV)

Mingda Ma, Alvin Sun, Jialiang Zhang

Featured Project

# Team Members

* Yixiao Sun (yixiaos3)

* Mingda Ma (mingdam2)

* Jialiang Zhang (jz23)

# Problem Statement

Autonomous delivery over drone networks has become one of the new trends which can save a tremendous amount of labor. However, it is very difficult to scale things up due to the inefficiency of multi-rotors collaboration especially when they are carrying payload. In order to actually have it deployed in big cities, we could take advantage of the large ground vehicle network which already exists with rideshare companies like Uber and Lyft. The roof of an automobile has plenty of spaces to hold regular size packages with magnets, and the drone network can then optimize for flight time and efficiency while factoring in ground vehicle plans. While dramatically increasing delivery coverage and efficiency, such strategy raises a challenging problem of drone docking onto moving ground vehicles.

# Solution

We aim at tackling a particular component of this project given the scope and time limitation. We will implement a decentralized multi-agent control system that involves synchronizing a ground vehicle and a drone when in close proximity. Assumptions such as knowledge of vehicle states will be made, as this project is aiming towards a proof of concepts of a core challenge to this project. However, as we progress, we aim at lifting as many of those assumptions as possible. The infrastructure of the lab, drone and ground vehicle will be provided by our kind sponsor Professor Naira Hovakimyan. When the drone approaches the target and starts to have visuals on the ground vehicle, it will automatically send a docking request through an RF module. The RF receiver on the vehicle will then automatically turn on its assistant devices such as specific LED light patterns which aids motion synchronization between ground and areo vehicles. The ground vehicle will also periodically send out locally planned paths to the drone for it to predict the ground vehicle’s trajectory a couple of seconds into the future. This prediction can help the drone to stay within close proximity to the ground vehicle by optimizing with a reference trajectory.

### The hardware components include:

Provided by Research Platforms

* A drone

* A ground vehicle

* A camera

Developed by our team

* An LED based docking indicator

* RF communication modules (xbee)

* Onboard compute and communication microprocessor (STM32F4)

* Standalone power source for RF module and processor

# Required Circuit Design

We will integrate the power source, RF communication module and the LED tracking assistant together with our microcontroller within our PCB. The circuit will also automatically trigger the tracking assistant to facilitate its further operations. This special circuit is designed particularly to demonstrate the ability for the drone to precisely track and dock onto the ground vehicle.

# Criterion for Success -- Stages

1. When the ground vehicle is moving slowly in a straight line, the drone can autonomously take off from an arbitrary location and end up following it within close proximity.

2. Drones remains in close proximity when the ground vehicle is slowly turning (or navigating arbitrarily in slow speed)

3. Drone can dock autonomously onto the ground vehicle that is moving slowly in straight line

4. Drone can dock autonomously onto the ground vehicle that is slowly turning

5. Increase the speed of the ground vehicle and successfully perform tracking and / or docking

6. Drone can pick up packages while flying synchronously to the ground vehicle

We consider project completion on stage 3. The stages after that are considered advanced features depending on actual progress.

Project Videos