Project

# Title Team Members TA Documents Sponsor
10 Automated Video Capture Bird Feeder with Data Collection
Colten Brunner
John Golden
Kevin Li
Nikhil Arora design_document2.pdf
final_paper1.pdf
photo1.jpg
photo2.jpg
presentation1.pptx
proposal2.pdf
video
# Automated Video Capture Bird Feeder with Data Collection

Team Members:
Kevin Li (kli56)
Colten Brunner (cbrunner)
John Golden (jgolden4)

# Problem

Many nature enthusiasts enjoy watching birds outside of their windows with homemade or store bought feeders. This practice has been going on for many years, but until recently it has been impossible to see the birds feeding without being present. With modern day technology, it has become possible to mount cameras onto or adjacent to bird feeders in order to see birds feeding, but in the new era of information technology, there should be more to bird feeders than simple footage. We seek to add onto an automated video capture system by including data capture to analyze when peak feeding hours occur. This problem is one that occurs for common bird watchers and ornithologists alike. Whether it is knowing when to sit in front of your bird feeder or wanting to collect feeding data in specific areas, this is a problem that necessitates a solution.

# Solution
The solution we propose involves a bird feeder that has a camera to turn on when motion is detected. The idea is to have an ultrasonic transducer that would trigger a camera to record for a given set of time if motion is detected. In addition specific data points that would be beneficial to nature enthusiasts would be acquired and stored. These would include time intervals when birds arrive to identify peak bird times and would be stored along with the video footage on an sd card.

# Solution Components

## Subsystem 1 - Video Capture

This subsystem focuses on capturing video footage triggered by the ultrasonic transducer. Components include: An ultrasonic transducer to detect motion and alert the camera to start recording, a microcontroller for processing video data and triggering the camera system as well as transmitting bird tracking data, and a camera that will take videos of the birds feeding.

## Subsystem 2 - Data Collection

Data Collection will be important to the end user and so require a separate system to ingest the data and store it properly for later usage. This will require connections to other subsystems to check for example if the camera is turned on and will require a storage component in addition to a processing unit.

## Subsystem 3 - Power System

A power system is required to power the other subsystems and during testing this will be done through dc power supply with potentially additional voltage regulations. Ideally in the final project all subsystems would be powered by a battery pack.

## Subsystem 4 - Bird Feeder

The bird feeder subsystem is the physical enclosure that stores the bird seed as well as houses all the electronic components. This means that fire hazard concerns need to be taken into account as well as protective measures for the camera due to the outdoor location of the bird feeder. The camera also needs to be protected from the elements while still maintaining unimpeded motion capture.


# Criterion For Success

-Video footage of birds feeding is successfully captured and stored in specific time intervals.

-The motion detector is sensitive to birds and wildlife, minimizing unnecessary background "noise."

-A collection of the time intervals when the birds would arrive for feeding and have the peak times the birds are out.

-The bird feeder successfully distributes food into the “feeding area” until the reservoir is completely empty.

Logic Circuit Teaching Board

Younas Abdul Salam, Andrzej Borzecki, David Lee

Featured Project

Partners: Younas Abdul Salam, Andrzej Borzecki, David Lee

The proposal our group has is of creating a board that will be able to teach students about logic circuits hands on. The project will consist of a board and different pieces that represent gates. The board will be used to plug in the pieces and provide power to the internal circuitry of the pieces. The pieces will have a gate and LEDs inside, which will be used to represent the logic at the different terminals.

By plugging in and combining gates, students will be able to see the actual effect on logic from the different combinations that they make. To add to it, we will add a truth table that can be used to represent inputs and outputs required, for example, for a class project or challenge. The board will be able to read the truth table and determine whether the logic the student has created is correct.

This board can act as a great learning source for students to understand the working of logic circuits. It can be helpful in teaching logic design to students in high schools who are interested in pursuing a degree in Electrical Engineering.

Please comment on whether the project is good enough to be approved, and if there are any suggestions.

Thank you