Project

# Title Team Members TA Documents Sponsor
39 Hand gesture controlled audio effects system
Sarthak Singh
Sergio Bernal
Zachary Baum
Zicheng Ma design_document1.pdf
design_document2.pdf
final_paper1.pdf
photo1.png
photo2.png
presentation1.pptx
proposal1.pdf
Team Members:
Sarthak Singh (singh94)
Zachary Baum (zbaum2)
Sergio Bernal (sergiob2)

Problem
In audio production, both amateur and professional settings lack intuitive, hands-free control over audio effects. This limitation restricts the creativity and efficiency of users, particularly in live performance scenarios or in situations where physical interaction with equipment is challenging.

Solution Overview
Our project aims to develop a gesture-controlled audio effects processor. This device will allow users to manipulate audio effects through hand gestures, providing a more dynamic and expressive means of audio control. The device will use motion sensors to detect gestures, which will then adjust various audio effect parameters in real-time.

Solution Components:

Gesture Detection Subsystem:
The Gesture Detection Subsystem in our audio effects system uses a camera to track hand movements and orientations. The camera will be connected to a Raspberry PI which then sends signals to our custom PCB. The system processes sensor data in real time, minimizing latency and filtering out inaccuracies. Users can customize gesture-to-effect mappings, allowing for personalized control schemes. This subsystem is integrated with the audio processing unit, ensuring that gestures are seamlessly translated into desired audio effect alterations.


Audio Processing Subsystem:

The Audio Processing Subsystem uses a DSP algorithm to modify audio signals in real time. It includes various audio effects like reverb and delay, which change based on the user's hand gestures detected by the Gesture Detection Subsystem. This part of the system allows users to customize these effects easily. The DSP works closely with the gesture system, making it easy for users to control audio effects simply through gestures. Specifically, we are using a STM32 microcontroller on a custom PCB to handle this subsystem.

Control Interface Subsystem:
The Control Interface Subsystem in our audio effects processor provides a user-friendly interface for displaying current audio effect settings and other relevant information. This subsystem includes a compact screen that shows the active audio effects, their parameters, and the intensity levels set by the gesture controls. It is designed for clarity and ease of use, ensuring that users can quickly glance at the interface to get the necessary information during live performances or studio sessions.

Power Subsystem:

The Power Subsystem for our audio effects processor is simple and direct. It plugs into a standard AC power outlet and includes a power supply unit that converts AC to the DC voltages needed for the processor, sensors, and control interface. This design ensures steady and reliable power, suitable for long use periods, without the need for batteries.
Criterion for Success:
Our solution will enable users to intuitively control multiple audio effects in real time through gestures. The device will be responsive, accurate, and capable of differentiating between a wide range of gestures. It will be compatible with a variety of audio equipment and settings, from studio to live performance.

Alternatives:

Existing solutions are predominantly foot-pedal or knob-based controllers. These are limiting in terms of the range of expression and require physical contact. Our gesture-based solution offers a more versatile and engaging approach, allowing for a broader range of expression and interaction with audio effects.

Electronic Mouse (Cat Toy)

Jack Casey, Chuangy Zhang, Yingyu Zhang

Electronic Mouse (Cat Toy)

Featured Project

# Electronic Mouse (Cat Toy)

# Team Members:

- Yingyu Zhang (yzhan290)

- Chuangy Zhang (czhan30)

- Jack (John) Casey (jpcasey2)

# Problem Components:

Keeping up with the high energy drive of some cats can often be overwhelming for owners who often choose these pets because of their low maintenance compared to other animals. There is an increasing number of cats being used for service and emotional support animals, and with this, there is a need for an interactive cat toy with greater accessibility.

1. Get cats the enrichment they need

1. Get cats to chase the “mouse” around

1. Get cats fascinated by the “mouse”

1. Keep cats busy

1. Fulfill the need for cats’ hunting behaviors

1. Interactive fun between the cat and cat owner

1. Solve the shortcomings of electronic-remote-control-mouses that are out in the market

## Comparison with existing products

- Hexbug Mouse Robotic Cat Toy: Battery endurance is very low; For hard floors only

- GiGwi Interactive Cat Toy Mouse: Does not work on the carpet; Not sensitive to cat touch; Battery endurance is very low; Can't control remotely

# Solution

A remote-controlled cat toy is a solution that allows more cat owners to get interactive playtime with their pets. With our design, there will be no need to get low to the ground to adjust it often as it will go over most floor surfaces and in any direction with help from a strong motor and servos that won’t break from wall or cat impact. To prevent damage to household objects it will have IR sensors and accelerometers for use in self-driving modes. The toy will be run and powered by a Bluetooth microcontroller and a strong rechargeable battery to ensure playtime for hours.

## Subsystem 1 - Infrared(IR) Sensors & Accelerometer sensor

- IR sensors work with radar technology and they both emit and receive Infrared radiation. This kind of sensor has been used widely to detect nearby objects. We will use the IR sensors to detect if the mouse is surrounded by any obstacles.

- An accelerometer sensor measures the acceleration of any object in its rest frame. This kind of sensor has been used widely to capture the intensity of physical activities. We will use this sensor to detect if cats are playing with the mouse.

## Subsystem 2 - Microcontroller(ESP32)

- ESP32 is a dual-core microcontroller with integrated Wi-Fi and Bluetooth. This MCU has 520 KB of SRAM, 34 programmable GPIOs, 802.11 Wi-Fi, Bluetooth v4.2, and much more. This powerful microcontroller enables us to develop more powerful software and hardware and provides a lot of flexibility compared to ATMegaxxx.

Components(TBD):

- Product: [https://www.digikey.com/en/products/detail/espressif-systems/ESP32-WROOM-32/8544298](url)

- Datasheet: [http://esp32.net](url)

## Subsystem 3 - App

- We will develop an App that can remotely control the mouse.

1. Control the mouse to either move forward, backward, left, or right.

1. Turn on / off / flashing the LED eyes of the mouse

1. keep the cat owner informed about the battery level of the mouse

1. Change “modes”: (a). keep running randomly without stopping; (b). the cat activates the mouse; (c). runs in cycles(runs, stops, runs, stops…) intermittently (mouse hesitates to get cat’s curiosity up); (d). Turn OFF (completely)

## Subsystem 4 - Motors and Servo

- To enable maneuverability in all directions, we are planning to use 1 servo and 2 motors to drive the robotic mouse. The servo is used to control the direction of the mouse. Wheels will be directly mounted onto motors via hubs.

Components(TBD):

- Metal Gear Motors: [https://www.adafruit.com/product/3802](url)

- L9110H H-Bridge Motor Driver: [https://www.adafruit.com/product/4489](url)

## Subsystem 5 - Power Management

- We are planning to use a high capacity (5 Ah - 10 Ah), 3.7 volts lithium polymer battery to enable the long-last usage of the robotic mouse. Also, we are using the USB lithium polymer ion charging circuit to charge the battery.

Components(TBD):

- Lithium Polymer Ion Battery: [https://www.adafruit.com/product/5035](url)

- USB Lithium Polymer Ion Charger: [https://www.adafruit.com/product/259](url)

# Criterion for Success

1. Can go on tile, wood, AND carpet and alternate

1. Has a charge that lasts more than 10 min

1. Is maneuverable in all directions(not just forward and backward)

1. Can be controlled via remote (App)

1. Has a “cat-attractor”(feathers, string, ribbon, inner catnip, etc.) either attached to it or drags it behind (attractive appearance for cats)

1. Retains signal for at least 15 ft away

1. Eyes flash

1. Goes dormant when caught/touched by the cats (or when it bumps into something), reactivates (and changes direction) after a certain amount of time

1. all the “modes” worked as intended

Project Videos