Project

# Title Team Members TA Documents Sponsor
24 Autonomous Sailboat (2)
Austin Glass
Devansh Damani
MICHAEL Sutanto
Koushik Udayachandran design_document2.pdf
final_paper1.pdf
photo1.jpg
photo2.jpg
presentation1.pdf
proposal1.pdf
proposal2.pdf
# Team Members:
- Austin Glass (akglass2)
- Devansh Damani (ddamani2)

# Problem
Given a starting point, destination, path, and environmental factors such as wind speed or water current, a boat can travel both autonomously or remotely.

Specifically, as stated by the project pitch, the goal is to improve the performance achieved by an earlier iteration of this project, as well as demonstrating new capabilities.

We aim to be able to seamlessly switch between autonomous control and remote user control. We also aim to introduce ease of life features like battery indicators, simpler charging / batteries, and an autonomous return to user mode.

# Solution
Our end goal is to make sure we have a boat that autonomously or remotely is able to traverse a body of water regardless of the water’s conditions. By meeting our criterions for success, we believe that we will succeed in creating such a boat.

# Solution Components
_Note: Many of these components, besides the speed sensor and ultrawideband, are already incorporated in the Spring 2022 design of the boat. As discussed with Professor Fliflet, these will be provided as is, and will be utilized with our improvements and changes_

## Subsystem 1 - The Boat
The boat itself is built, with controllable rudders and sail trim. These elements operate the boat, changing its direction and speed as it picks up wind.

## Subsystem 2 - Compass Sensor (LSM303)
The compass works to direct the boat along its path. If it needs to travel north, this data can be taken in and be processed along with the wind direction to direct the boat. The compass also works to detect heeling, which is necessary for telling its current orientation on the water (i.e. if it is impacted by waves).

## Subsystem 3 - Wind Direction Sensor (RotaryEncoder library)
Similarly to the compass, this information is crucial to determine the sail and rudder positions, as there is an optimal orientation for the desired direction with a given wind direction.

## Subsystem 4 - GPS (NEO-6M GPS)
Locates the current position of the boat, and can be verified for current and targeted path, as well as data for testing accuracy.

## Subsystem 5 - Remote Control (FlySky FS-i6 Remote)
Remote control for operating the boat at a distance.

## Subsystem 6 - Speed Sensor
A new speed sensor can be added to the boat to help calculate its current and future position, potentially allowing for some predictability in its movement that could increase accuracy.

## Subsystem 7 - Ultra Wideband Chip (DWM1001)
To return back to a user, an ultrawideband chip could be used to determine where the boat is in relation to the user (located at the base station), and direct the boat back towards them. This can be combined with other data like compass data to determine the direction needed to travel.


# Criterion For Success
Our main criterion for measuring success is making sure that the boat is able to autonomously travel in a straight line adjusting for the wind, water current and speed and other criteria. In the prior project, there hasn't been enough testing conducted, which is one of our biggest goals.

Regular testing in an outdoor environment, preferably in differing weather conditions, to prove the versatility of the boat and the autonomous code would be necessary. We will do this to test the sensors to verify if they maintain the boat’s linear and autonomous motion.

Working with Professor Fliflet to make sure we are starting from the right point with the project, not doing any work that has already been completed, and making efficient use of our time on improvements.

Electronic Mouse (Cat Toy)

Jack Casey, Chuangy Zhang, Yingyu Zhang

Electronic Mouse (Cat Toy)

Featured Project

# Electronic Mouse (Cat Toy)

# Team Members:

- Yingyu Zhang (yzhan290)

- Chuangy Zhang (czhan30)

- Jack (John) Casey (jpcasey2)

# Problem Components:

Keeping up with the high energy drive of some cats can often be overwhelming for owners who often choose these pets because of their low maintenance compared to other animals. There is an increasing number of cats being used for service and emotional support animals, and with this, there is a need for an interactive cat toy with greater accessibility.

1. Get cats the enrichment they need

1. Get cats to chase the “mouse” around

1. Get cats fascinated by the “mouse”

1. Keep cats busy

1. Fulfill the need for cats’ hunting behaviors

1. Interactive fun between the cat and cat owner

1. Solve the shortcomings of electronic-remote-control-mouses that are out in the market

## Comparison with existing products

- Hexbug Mouse Robotic Cat Toy: Battery endurance is very low; For hard floors only

- GiGwi Interactive Cat Toy Mouse: Does not work on the carpet; Not sensitive to cat touch; Battery endurance is very low; Can't control remotely

# Solution

A remote-controlled cat toy is a solution that allows more cat owners to get interactive playtime with their pets. With our design, there will be no need to get low to the ground to adjust it often as it will go over most floor surfaces and in any direction with help from a strong motor and servos that won’t break from wall or cat impact. To prevent damage to household objects it will have IR sensors and accelerometers for use in self-driving modes. The toy will be run and powered by a Bluetooth microcontroller and a strong rechargeable battery to ensure playtime for hours.

## Subsystem 1 - Infrared(IR) Sensors & Accelerometer sensor

- IR sensors work with radar technology and they both emit and receive Infrared radiation. This kind of sensor has been used widely to detect nearby objects. We will use the IR sensors to detect if the mouse is surrounded by any obstacles.

- An accelerometer sensor measures the acceleration of any object in its rest frame. This kind of sensor has been used widely to capture the intensity of physical activities. We will use this sensor to detect if cats are playing with the mouse.

## Subsystem 2 - Microcontroller(ESP32)

- ESP32 is a dual-core microcontroller with integrated Wi-Fi and Bluetooth. This MCU has 520 KB of SRAM, 34 programmable GPIOs, 802.11 Wi-Fi, Bluetooth v4.2, and much more. This powerful microcontroller enables us to develop more powerful software and hardware and provides a lot of flexibility compared to ATMegaxxx.

Components(TBD):

- Product: [https://www.digikey.com/en/products/detail/espressif-systems/ESP32-WROOM-32/8544298](url)

- Datasheet: [http://esp32.net](url)

## Subsystem 3 - App

- We will develop an App that can remotely control the mouse.

1. Control the mouse to either move forward, backward, left, or right.

1. Turn on / off / flashing the LED eyes of the mouse

1. keep the cat owner informed about the battery level of the mouse

1. Change “modes”: (a). keep running randomly without stopping; (b). the cat activates the mouse; (c). runs in cycles(runs, stops, runs, stops…) intermittently (mouse hesitates to get cat’s curiosity up); (d). Turn OFF (completely)

## Subsystem 4 - Motors and Servo

- To enable maneuverability in all directions, we are planning to use 1 servo and 2 motors to drive the robotic mouse. The servo is used to control the direction of the mouse. Wheels will be directly mounted onto motors via hubs.

Components(TBD):

- Metal Gear Motors: [https://www.adafruit.com/product/3802](url)

- L9110H H-Bridge Motor Driver: [https://www.adafruit.com/product/4489](url)

## Subsystem 5 - Power Management

- We are planning to use a high capacity (5 Ah - 10 Ah), 3.7 volts lithium polymer battery to enable the long-last usage of the robotic mouse. Also, we are using the USB lithium polymer ion charging circuit to charge the battery.

Components(TBD):

- Lithium Polymer Ion Battery: [https://www.adafruit.com/product/5035](url)

- USB Lithium Polymer Ion Charger: [https://www.adafruit.com/product/259](url)

# Criterion for Success

1. Can go on tile, wood, AND carpet and alternate

1. Has a charge that lasts more than 10 min

1. Is maneuverable in all directions(not just forward and backward)

1. Can be controlled via remote (App)

1. Has a “cat-attractor”(feathers, string, ribbon, inner catnip, etc.) either attached to it or drags it behind (attractive appearance for cats)

1. Retains signal for at least 15 ft away

1. Eyes flash

1. Goes dormant when caught/touched by the cats (or when it bumps into something), reactivates (and changes direction) after a certain amount of time

1. all the “modes” worked as intended

Project Videos