Project

# Title Team Members TA Documents Sponsor
59 Automatic Titration System
Jack Viebrock
Jason Flanagan
Matthew Weyrich
Selva Subramaniam design_document2.pdf
final_paper1.pdf
photo1.png
photo2.png
presentation2.pdf
proposal2.pdf
video
# Automatic Titration System
## Team Members:
- Jack Viebrock (Jackav3)
- Jason Flanagon (Jasonpf2)
- Matthew Weyrich (Weyrich4)
## Problem
Titration is a time-consuming process that can introduce large amounts of error from the manual procedure, such as improper burette reading, accidental extra analyte added, and guessing on the endpoint with a color indicator. Automatic titration systems can help reduce this error but cost over $3,000, restricting their application to wealthy labs.
## Solution
We will create a lower-cost automatic titration system to bridge this gap in the market to make it affordable to have high-quality titration data accuracy over manual methods

## Solution Components:
### Subsystem 1: Sensors
PH Module Probe Detection and Acquisition Monitoring Control Industrial Inspection Tool PH014 PH Electrode Probe: Amazon.com: Industrial & Scientific
(https://www.amazon.com/Detection-Acquisition-Monitoring-Industrial-Inspection/dp/B08XMBGCM8/ref=asc_df_B08XMBGCM8/?tag=hyprod-20&linkCode=df0&hvadid=675719866680&hvpos=&hvnetw=g&hvrand=3781607236679164999&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1016367&hvtargid=pla-2246775686040&psc=1&mcid=c6b1279b2a033a4ebc0bcac78d93f067 )

The titration system will not need the use of an indicator. To determine the amount of titrate to add to the solution, a pH sensor will be used. This sensor will connect to microcontroller, indicating the current acidity of the solution on a scale of 0-14, where 7 is the base value.
### Subsystem 2: Power System
We will be using an AC (120V, 60Hz) wall to DC (dependent on final components and circuits) adapter, additionally we will need to use dc-to-dc adapters for the varying dc voltages needed for the varying subsystem devices including the microcontroller (5.5V), stepping motor (2.8V). With those dc-to-dc converters, we can make our own PCBs or order prefabricated devices to perform the conversion. If time permits, we may dive into a battery system to support portability.
### Subsystem 3: Control
PIC PIC® 18F Microcontroller IC 8-Bit 48MHz 32KB (16K x 16) FLASH 28-SOIC
The microcontroller will be taking the live output voltage from the pH sensors and will control the speed and precision of the titrate pump accordingly. The microcontroller will also be in-charge of starting and ending the pump when the start button is pressed. Volume amounts per step of the motor will be pre-determined and calibrated so the microcontroller can determine volume.
### Subsystem 4: Motor
Our implementation of an automatic titration system will imitate a burette by using a syringe driver, which is a stepper motor and linear actuator to precisely administer titrant with a syringe. The motor will need to be connected to the PCB so it can be controlled through the microcontroller. This is a potential stepper motor we could use: Buy 17N19S1684MB-200RS Nema 17 Non-captive Linear Stepper Motor Actuator 48mm Stack 1.8 Deg 1.68A Lead 8mm/0.31496" Lead Screw 200mm Online - Oyostepper.com (https://www.oyostepper.com/goods-1162-Nema-17-Non-captive-Linear-Stepper-Motor-Actuator-48mm-Stack-168A-Lead-8mm031496-Length-200mm.html) which has 0.04 mm lead/step to allow us to compress the syringe exactly. The syringe will then be attached to a plastic tube with a pointed end to minimize drop size, thus further increasing precision on titrant dispense.
### (Stretch Goal) Subsystem 5: Display of Data with Graph
The main data output to user will be a live reading of the pH, but this stretch goal will display a common graph used in titrations is called a “titration curve”. If we can fit it in the budget and time constraints, we will add this functionality to display this graph.
Amazon.com: Treedix 3.5 inch TFT LCD Display 320 x 480 Color Screen Module Compatible with Arduino UNO R3 Mega2560 : Electronics (https://www.amazon.com/Treedix-Display-Screen-Arduino-Mega2560/dp/B0872S57HG?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A22NPL1KB8AOV0 )
An Arduino Uno will be used along with an LCD display to show the current pH of the solution. A live graph will be created using the Arduino Serial Plotter to visually show the live data from the pH sensors.

## Criterion For Success
(For safety with demos, we can do a food-safe vinegar titration to avoid any harmful chemicals)
- Primary Success: Repeat titration with only 0.5% deviation between measurements
- Secondary Success: Provide a decrease in 30% of time taken over a manual titration.

BusPlan

Aashish Kapur, Connor Lake, Scott Liu

BusPlan

Featured Project

# People

Scott Liu - sliu125

Connor Lake - crlake2

Aashish Kapur - askapur2

# Problem

Buses are scheduled inefficiently. Traditionally buses are scheduled in 10-30 minute intervals with no regard the the actual load of people at any given stop at a given time. This results in some buses being packed, and others empty.

# Solution Overview

Introducing the _BusPlan_: A network of smart detectors that actively survey the amount of people waiting at a bus stop to determine the ideal amount of buses at any given time and location.

To technically achieve this, the device will use a wifi chip to listen for probe requests from nearby wifi-devices (we assume to be closely correlated with the number of people). It will use a radio chip to mesh network with other nearby devices at other bus stops. For power the device will use a solar cell and Li-Ion battery.

With the existing mesh network, we also are considering hosting wifi at each deployed location. This might include media, advertisements, localized wifi (restricted to bus stops), weather forecasts, and much more.

# Solution Components

## Wifi Chip

- esp8266 to wake periodically and listen for wifi probe requests.

## Radio chip

- NRF24L01 chip to connect to nearby devices and send/receive data.

## Microcontroller

- Microcontroller (Atmel atmega328) to control the RF chip and the wifi chip. It also manages the caching and sending of data. After further research we may not need this microcontroller. We will attempt to use just the ens86606 chip and if we cannot successfully use the SPI interface, we will use the atmega as a middleman.

## Power Subsystem

- Solar panel that will convert solar power to electrical power

- Power regulator chip in charge of taking the power from the solar panel and charging a small battery with it

- Small Li-Ion battery to act as a buffer for shady moments and rainy days

## Software and Server

- Backend api to receive and store data in mongodb or mysql database

- Data visualization frontend

- Machine learning predictions (using LSTM model)

# Criteria for Success

- Successfully collect an accurate measurement of number of people at bus stops

- Use data to determine optimized bus deployment schedules.

- Use data to provide useful visualizations.

# Ethics and Safety

It is important to take into consideration the privacy aspect of users when collecting unique device tokens. We will make sure to follow the existing ethics guidelines established by IEEE and ACM.

There are several potential issues that might arise under very specific conditions: High temperature and harsh environment factors may make the Li-Ion batteries explode. Rainy or moist environments may lead to short-circuiting of the device.

We plan to address all these issues upon our project proposal.

# Competitors

https://www.accuware.com/products/locate-wifi-devices/

Accuware currently has a device that helps locate wifi devices. However our devices will be tailored for bus stops and the data will be formatted in a the most productive ways from the perspective of bus companies.