Project

# Title Team Members TA Documents Sponsor
67 Toothbrush Alarm
Carl Xu
Eric Lin
Laurenz Nava
Zicheng Ma design_document2.pdf
final_paper1.pdf
photo1.png
photo2.png
photo3.png
photo4.png
presentation1.pdf
proposal2.pdf
video1.mp4
video
# Toothbrush Alarm

Team Members:
- Eric Lin (yulin4)
- Carl Xu (zx32)
- Laurenz Nava (lfnava2)

# Problem

Waking up early in the morning is a challenge that many people face, and conventional alarms often fail to provide an effective solution. Despite setting multiple alarms, people find themselves consistently oversleeping, waking up significantly later than intended. This issue can lead to a range of negative consequences, including disrupted daily schedules, reduced productivity, and increased stress. Traditional alarms tend to lack the ability to ensure that a person not only wakes up but also gets out of bed and starts their day. This is particularly problematic for those with a heavy sleeping pattern or a habit of snoozing alarms.

# Solution

To address this issue, our idea is to create a Toothbrush Alarm. The concept involves an alarm that persists until you get up and spend, for example, 3 minutes brushing your teeth. Once the toothbrushing routine is complete, the alarm automatically stops. This not only ensures a timely wake-up but also promotes a refreshed start to the day after engaging in the morning teeth-cleaning ritual.

# Solution Components

## Subsystem 1 – Toothbrush Dock

The dock will sense the proximity of the toothbrush, and how long the user’s been brushing their teeth. Once the user picks the toothbrush up and puts it down after more than 3 minutes, it will tell the alarm to turn off.

The dock will contain our PCB board to control the whole system.
Multiple pressure sensors are contained in a shape that perfectly matches the bottom of the toothbrush to detect if the toothbrush is docked.

The sensors will be at the bottom and side to ensure the object docked is the toothbrush, and the user is not fooling the dock with another object.

DF9-16 pressure sensor: https://a.co/d/5HXVw5w



## Subsystem 2 – Miniature Accelerometer

To ensure the user brushes their teeth after picking up the toothbrush, the accelerometer will be used to detect whether the user is making appropriate teeth brushing movements. While it is possible to simply wave the toothbrush without actually brushing your teeth, the main purpose of the device is to wake up the user, and sufficient physical movement will help, regardless of if it is used to brush teeth or not.

The accelerometer will determine the force applied on the brush and how often it switches directions, so it can tell when the user is brushing their teeth

ADXL326BCPZ-RL7: https://www.digikey.com/en/products/detail/analog-devices-inc/ADXL326BCPZ-RL7/2043340


## Subsystem 3 - Alarm

The alarm is connected to the toothbrush dock, and it will stop ringing once the user picks up the toothbrush. However, if the user does not put it back into the dock after 5 minutes, it will restart the ring.

The alarm will be a speaker integrated into the dock, or can be wired into the user’s room to more effectively wake them up.

COM-11089 ROHS speaker: https://www.sparkfun.com/products/11089


## Subsystem 4 – Body Motion Sensor

A possible addition to the project for added complexity. It would detect the appearance of a new individual in the bathroom to further ensure the system works intended.

The motion sensor will be installed around the dock, facing the user to detect if they have entered the bathroom and continued present in the bathroom, ensuring they are not fooling the system.

HC-SR312 AM312 pir motion detector senses passive body infrared to make sure the moving object is a human.

HC-SR312 AM312 pir motion detector: https://a.co/d/3Jodam9


# Criterion For Success

1. Alarm will turn off after the user brushed their teeth for 3 minutes.

2. Toothbrush can detect if it is inside a human’s mouth.

3. Dock can detect if the toothbrush is present in the dock.

4. Dock can track how long the toothbrush is not present.

El Durazno Wind Turbine Project

Alexander Hardiek, Saanil Joshi, Ganpath Karl

El Durazno Wind Turbine Project

Featured Project

Partners: Alexander Hardiek (ahardi6), Saanil Joshi (stjoshi2), and Ganpath Karl (gkarl2)

Project Description: We have decided to innovate a low cost wind turbine to help the villagers of El Durazno in Guatemala access water from mountains, based on the pitch of Prof. Ann Witmer.

Problem: There is currently no water distribution system in place for the villagers to gain access to water. They have to travel my foot over larger distances on mountainous terrain to fetch water. For this reason, it would be better if water could be pumped to a containment tank closer to the village and hopefully distributed with the help of a gravity flow system.

There is an electrical grid system present, however, it is too expensive for the villagers to use. Therefore, we need a cheap renewable energy solution to the problem. Solar energy is not possible as the mountain does not receive enough solar energy to power a motor. Wind energy is a good alternative as the wind speeds and high and since it is a mountain, there is no hindrance to the wind flow.

Solution Overview: We are solving the power generation challenge created by a mismatch between the speed of the wind and the necessary rotational speed required to produce power by the turbine’s generator. We have access to several used car parts, allowing us to salvage or modify different induction motors and gears to make the system work.

We have two approaches we are taking. One method is converting the induction motor to a generator by removing the need of an initial battery input and using the magnetic field created by the magnets. The other method is to rewire the stator so the motor can spin at the necessary rpm.

Subsystems: Our system components are split into two categories: Mechanical and Electrical. All mechanical components came from a used Toyota car such as the wheel hub cap, serpentine belt, car body blade, wheel hub, torsion rod. These components help us covert wind energy into mechanical energy and are already built and ready. Meanwhile, the electrical components are available in the car such as the alternator (induction motor) and are designed by us such as the power electronics (AC/DC converters). We will use capacitors, diodes, relays, resistors and integrated circuits on our printed circuit boards to develop the power electronics. Our electrical components convert the mechanical energy in the turbine into electrical energy available to the residents.

Criterion for success: Our project will be successful when we can successfully convert the available wind energy from our meteorological data into electricity at a low cost from reusable parts available to the residents of El Durazno. In the future, their residents will prototype several versions of our turbine to pump water from the mountains.